Summary

Retroductal 纳米微粒注射液对小鼠颌下腺的治疗

Published: May 03, 2018
doi:

Summary

局部药物向颌下腺的传递对了解涎腺生物学和新疗法的发展有很浓厚的兴趣。我们提出了一个更新和详细的 retroductal 注射协议, 旨在提高交付准确性和实验再现性。本文提出的应用是高分子纳米粒子的传递。

Abstract

涎腺治疗的两个共同目标是在自身免疫或辐射损伤后组织功能障碍的预防和治疗。通过局部向涎腺提供生物活性化合物, 可以安全地实现更大的组织浓度, 而不是系统性的管理。此外, 离体超腺堆积物的靶组织效应可以显著降低。在这方面, retroductal 注射液是一种广泛应用的方法, 以调查涎腺生物学和病理生理学。Retroductal 对生长因子、原代细胞、腺病毒载体和小分子药物的管理在损伤的设置中支持腺体功能。我们以前已经证明了 retroductally 注射纳米粒子-siRNA 策略在辐照后维持腺体功能的有效性。在这里, 一个高效和可重复的方法管理纳米材料的小鼠颌下腺通过沃顿的管道是详细 (图 1)。我们描述了进入口腔, 并概述了必要的步骤 cannulate 沃顿的管道, 并进一步的意见, 作为质量检查整个过程。

Introduction

涎腺功能障碍有许多病因, 包括 Sjögren 综合征, 自身免疫介导的功能性分泌组织丧失, 以及辐射诱发的 hyposalivation (RIH), 共同 sequella 头颈肿瘤放疗1。由于任一条件而导致的唾液功能丧失会诱发个人口腔和全身感染、蛀牙、消化和吞咽功能障碍、言语障碍和主要抑郁症1,2,3。因此, 生活质量显著受损, 干预措施仅限于缓解症状, 而不是治疗4。为了研究新的治疗方法在体内, 直接对涎腺进行生物活性化合物是有好处的。

Retroductal 注射液是一种很有价值的方法, 可以直接向唾液腺提供生物活性化合物, 并检测疾病、损伤或正常组织稳态下的疗效。三个主要唾液腺是腮腺 (PG), 颌下腺 (SMG) 和舌下 (SLG), 所有这些都空入口腔通过排泄导管。该小鼠的解剖允许通过插管的沃顿商学院的管道直接进入, 位于舌下的口底部5。插管后, 溶解药物可以直接管理到 SMG。在 retroductal 分娩后, 附加腺的扩散受周围组织胶囊的限制, 该囊调节与周围结构的材料交换6。smg 和它的导管是相似的结构在人, 并且经常被访问在 SMG 手术期间和 sialoendoscopy7。在人类和小鼠, PG 同样可以通过 Stensen 的导管在颊粘膜8

在 RIH 的小鼠模型中, SMG retroductal 注射液用于提供治疗方法, 包括生长因子、原代细胞、腺病毒载体、细胞因子和抗氧化化合物, 以调节细胞对损伤的反应, 并减少由此产生的组织损伤5,9,10,11,12,13,14,15,16。retroductal 注射液的临床成功最显著的是对腺病毒载体的管理, 以直接表达的水道 (水通道蛋白 1;AQP1) 治疗头颈癌放疗后的患者17

以前, 我们已经开发并显示了 retroductally 注射聚合物纳米 siRNA 系统的功效, 以保护唾液腺功能从 RIH11,18,19,20。作为我们过去工作的延伸, 在这里, 我们展示了我们的协议 retroductal SMG 注射使用一个荧光标记纳米粒子 (NP) 能够加载和交付否则不太可溶性药物21,22,23

我们已经合成了 NP 从两嵌段共聚物组成的聚 (苯乙烯-alt-马来酸酐)-b 聚 (苯乙烯) (PSMA) 通过可逆添加链碎片 (筏) 聚合, 如前所21。通过溶剂交换, 这些聚合物自发地自组装成胶束 NP 结构, 具有疏水性内部和亲水性外部的21。NPs 被标记与得克萨斯红色荧光允许验证 NP 交付入腺体, 不用牺牲动物。活体动物成像和 SMG 免疫组化显示在注射后1小时和1天。

此更新和可重现的插管协议应使其他人能够实现 retroductal 注射。我们预计, 这种精制技术将成为体内研究和治疗发展的关键24,25

Protocol

下文概述的所有体内程序均由纽约罗切斯特大学动物资源大学委员会批准。 1. 准备 使用32G 颅内导管与线插入, 削减3厘米的油管形成一个斜角结束, 大约45°到长轴。确认导线的长度至少比油管长1厘米。 将50µL PSMA 纳米粒子溶液 (图 1) 或其他注射材料加载到哈密尔顿注射器中。为减少注射过程中气压伤的几率, 请将导管管、鞘移除、?…

Representative Results

Retroductal 注射液可用于管理 NPs 到小鼠 SMG (图 1)。在这里, 我们提供了50µg PSMA NPs 标记与德州红荧光。 正确放置鼠标可以方便地访问和可视化口底 (图 2A-b)。颌下腺的乳突被确定为舌下的两个肉质突起。在插管 (图 2C) 和阿托品注射液之后, 注射器导…

Discussion

Retroductal 注射液对涎腺的局部药物传递至关重要。该技术在筛选治疗剂的条件, 包括干燥综合征和 RIH9,10,28的应用。通过 retroductal 注射液直接向 SMG 提供药物, 在降低靶向效应 (包括免疫激活11) 的潜在效果方面比系统性管理具有重要优势。在不积累周围组织的情况下, 最大限度地提高当地药物的输送能力, 也能?…

Declarações

The authors have nothing to disclose.

Acknowledgements

该出版物中报告的研究得到国家牙科和颅面研究研究所 (NIDCR) 和国立卫生研究院全国癌症研究所 (R56 DE025098、UG3 DE027695 和 F30 CA206296) 的支持。内容完全是作者的责任, 不一定代表国家卫生研究院的官方意见。这项工作也得到了 NSF DMR 1206219 和 IADR 口腔护理奖 (2016) 创新的支持。

我们要感谢詹 Gavrity 在 IVIS 实验中的帮助。我们要感谢凯伦. 宾利在执行 EM 方面的投入和协助。我们要感谢裴翁对 IHC 的协助。我们要感谢马修·格尔斯在图准备方面的协助。我们要感谢伊莲 Smolock 博士和艾米莉. 吴对这篇手稿的批判性阅读。

Materials

Pilocarpine hydrochloride Sigma Aldrich P6503 Pilocarpine
Student Vannas Spring Scissors Fine Science Tools 91500-9 Spring Scissors for Tracheostomy
Sterile Saline Solution Medline RDI30296H Saline
Dumont #7 Forceps Fine Science Tools 11274-20 Curved Forceps
Dumont #5 Forceps Fine Science Tools 11251-10 Straight Forceps
Standard Pattern Forceps Fine Science Tools 11000-12 Blunt Forceps
Fine Scissors- Tungsten Carbide Fine Science Tools 14568-09 Dissection Scissors
Microhematocrit Heparinized Capillary Tubes Fisher Scientific 22362566 Capillary tubes
Lubricant Eye Ointment Refresh N/A Refresh Lacri-Lube
Goat polyclonal anti-Nkcc1 Santa Cruz Biotech SC-21545 Nkcc1 Antibody
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) Thermo Fisher Scientific D1306 DAPI
GraphPad Prism GraphPad ver6.0 Statistical Software
Cotton tipped applicator Medline MDS202000 Applicator for eye ointment
0.5cc Insulin Syringe, 29G x 1/2" BD 7629 Syringe for intraperitoneal injection

Referências

  1. Miranda-Rius, J., Brunet-Llobet, L., Lahor-Soler, E., Farre, M. Salivary Secretory Disorders, Inducing Drugs, and Clinical Management. International Journal Of Medical Sciences. 12 (10), 811-824 (2015).
  2. Acauan, M. D., Figueiredo, M. A. Z., Cherubini, K., Gomes, A. P. N., Salum, F. G. Radiotherapy-induced salivary dysfunction: Structural changes, pathogenetic mechanisms and therapies. Archives of Oral Biology. 60 (12), 1802-1810 (2015).
  3. Dirix, P., Nuyts, S., Vander Poorten, V., Delaere, P., Van den Bogaert, W. The influence of xerostomia after radiotherapy on quality of life. Supportive Care in Cancer. 16 (2), 171-179 (2008).
  4. Vissink, A., et al. Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers. International Journal of Radiation Oncology Biology Physics. 78 (4), 983-991 (2010).
  5. Delporte, C., et al. Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proceedings of the National Academy of Sciences. 94 (7), 3268-3273 (1997).
  6. Samuni, Y., Baum, B. J. Gene delivery in salivary glands: from the bench to the clinic. Biochimica et Biophysica Acta. 1812 (11), 1515-1521 (2011).
  7. Beahm, D. D., et al. Surgical approaches to the submandibular gland: A review of literature. International Journal of Surgery. 7 (6), 503-509 (2009).
  8. Zheng, C., Shinomiya, T., Goldsmith, C. M., Di Pasquale, G., Baum, B. J. Convenient and reproducible in vivo gene transfer to mouse parotid glands. Oral diseases. 17 (1), 77-82 (2011).
  9. Zheng, C., et al. Prevention of Radiation-Induced Salivary Hypofunction Following hKGF Gene Delivery to Murine Submandibular Glands. Clinical Cancer Research. 17 (9), 2842-2851 (2011).
  10. Okazaki, Y., et al. Acceleration of rat salivary gland tissue repair by basic fibroblast growth factor. Archives of Oral Biology. 45 (10), 911-919 (2000).
  11. Arany, S., Benoit, D. S., Dewhurst, S., Ovitt, C. E. Nanoparticle-mediated gene silencing confers radioprotection to salivary glands in vivo. Molecular Therapy. 21 (6), 1182-1194 (2013).
  12. Cotrim, A. P., Sowers, A., Mitchell, J. B., Baum, B. J. Prevention of irradiation-induced salivary hypofunction by microvessel protection in mouse salivary glands. Molecular Therapy. 15 (12), 2101-2106 (2007).
  13. Redman, R. S., Ball, W. D., Mezey, E., Key, S. Dispersed donor salivary gland cells are widely distributed in the recipient gland when infused up the ductal tree. Biotechnic & Histochemistry. 84 (6), 253-260 (2009).
  14. Grundmann, O., Fillinger, J. L., Victory, K. R., Burd, R., Limesand, K. H. Restoration of radiation therapy-induced salivary gland dysfunction in mice by post therapy IGF-1 administration. BMC Cancer. 10, 417-417 (2010).
  15. Limesand, K. H., et al. Insulin-Like Growth Factor-1 Preserves Salivary Gland Function After Fractionated Radiation. International Journal of Radiation Oncology Biology Physics. 78 (2), 579-586 (2010).
  16. Marmary, Y., et al. Radiation-induced loss of salivary gland function is driven by cellular senescence and prevented by IL-6 modulation. Pesquisa do Câncer. , (2016).
  17. Baum, B. J., et al. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proceedings of the National Academy of Sciences of the United States of America. 109 (47), 19403-19407 (2012).
  18. Arany, S., et al. Pro-apoptotic gene knockdown mediated by nanocomplexed siRNA reduces radiation damage in primary salivary gland cultures. Journal of Cellular Biochemistry. 113 (6), 1955-1965 (2012).
  19. Benoit, D. S. W., Henry, S. M., Shubin, A. D., Hoffman, A. S., Stayton, P. S. pH-responsive polymeric siRNA carriers sensitize multidrug resistant ovarian cancer cells to doxorubicin via knockdown of polo-like kinase 1. Molecular pharmaceutics. 7 (2), 442-455 (2010).
  20. Malcolm, D. W., Varghese, J. J., Sorrells, J. E., Ovitt, C. E., Benoit, D. S. W. The Effects of Biological Fluids on Colloidal Stability and siRNA Delivery of a pH-Responsive Micellar Nanoparticle Delivery System. ACS Nano. , (2017).
  21. Baranello, M. P., Bauer, L., Benoit, D. S. Poly(styrene-alt-maleic anhydride)-based diblock copolymer micelles exhibit versatile hydrophobic drug loading, drug-dependent release, and internalization by multidrug resistant ovarian cancer cells. Biomacromolecules. 15 (7), 2629-2641 (2014).
  22. Wang, Y., et al. Fracture-Targeted Delivery of β-Catenin Agonists via Peptide-Functionalized Nanoparticles Augments Fracture Healing. ACS Nano. 11 (9), 9445-9458 (2017).
  23. Baranello, M. P., Bauer, L., Jordan, C. T., Benoit, D. S. W. Micelle Delivery of Parthenolide to Acute Myeloid Leukemia Cells. Cellular and Molecular Bioengineering. 8 (3), 455-470 (2015).
  24. Kuriki, Y., et al. Cannulation of the Mouse Submandibular Salivary Gland via the Wharton’s Duct. Journal of Visualized Experiments. (51), e3074 (2011).
  25. Nair, R. P., Zheng, C., Sunavala-Dossabhoy, G. Retroductal Submandibular Gland Instillation and Localized Fractionated Irradiation in a Rat Model of Salivary Hypofunction. Journal of Visualized Experiments. (110), (2016).
  26. Wang, Y., Malcolm, D. W., Benoit, D. S. W. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials. 139 (Supplement C), 127-138 (2017).
  27. Hoffman, M. D., Van Hove, A. H., Benoit, D. S. W. Degradable hydrogels for spatiotemporal control of mesenchymal stem cells localized at decellularized bone allografts. Acta Biomaterialia. 10 (8), 3431-3441 (2014).
  28. Nguyen, C. Q., Yin, H., Lee, B. H., Chiorini, J. A., Peck, A. B. IL17: potential therapeutic target in Sjogren’s syndrome using adenovirus-mediated gene transfer. Laboratory Investigation. 91 (1), 54-62 (2011).
check_url/pt/57521?article_type=t

Play Video

Citar este artigo
Varghese, J. J., Schmale, I. L., Wang, Y., Hansen, M. E., Newlands, S. D., Ovitt, C. E., Benoit, D. S. W. Retroductal Nanoparticle Injection to the Murine Submandibular Gland. J. Vis. Exp. (135), e57521, doi:10.3791/57521 (2018).

View Video