Summary

小鼠用树脂叶毒素和疼痛测试进行脑血管内治疗

Published: September 02, 2020
doi:

Summary

上阴区域的瞬态受体电位瓦尼洛伊德类型1(TRPV1)已被建议在大脑功能中发挥一些作用。此处描述的是用于小鼠超针TRPV1脱敏的树脂叶铁通毒素的针心通泡注射方案。还介绍了一些疼痛测试的程序。

Abstract

瞬态受体电位瓦尼洛伊德类型 1 (TRPV1),热敏阳离子通道,已知会触发周围神经疼痛。除了其外周功能外,还建议它参与大脑功能。树脂叶毒素(RTX),一种超能TRPV1激动剂,已知会导致TRPV1的长期脱敏,这种脱敏性一直是研究TRPV1表达细胞生理相关性的替代方法。在这里,我们描述了小鼠用RTX治疗的内脑血管(即c.v.)治疗方案。介绍了用于测试外围TRPV1刺激(RTX测试)和机械刺激(尾压测试)的发音的程序。虽然被施用RTX i.c.v.的小鼠的诱导反应与对照组相当,但RTX-i.c.v.管理的小鼠对对乙酰氨基酚的镇痛作用不敏感,这表明i.c.v.RTX治疗可诱发超针选择性TRPV1脱敏。该小鼠模型可作为研究TRPV1在脑/超功能中的作用的便捷实验系统。这些技术也可以应用于其他药物的中心行动的研究。

Introduction

动物通过周围神经上的传感器从环境中获得各种物理和化学刺激。瞬态受体电位瓦尼洛伊德类型1(TRPV1)是热敏、非选择性阳离子通道之一充当热传感器1、2,TRPV1的激活和/或调制是正常和炎症环境中的发音的关键步骤。1虽然整体表达模式是有争议的,TRPV1的表达也建议在超平区,参与各种大脑活动(包括异常4,热调节5,焦虑6,注意力缺陷多动障碍7,癫痫8)。此外,最近有人建议,对乙酰氨基酚,一种广泛使用的止痛药,调解中央TRPV1的激活,以引出其镇痛作用9,9,10。

管理过量的TRPV1激动剂,包括辣椒素和树脂叶毒素(RTX)动物导致TRPV1阳性神经元的死亡和长期脱敏TRPV1激动剂11,12。11,结合局部应用(本级,13、14、,14内15、16、17和刚内18),这种化学消融方法为研究TRPV1的生理功能提供了另一种方法。16,17我们最近报告说,RTX的内脑血管注射抑制了对乙酰氨基酚在小鼠中的镇痛作用,建议超针选择性TRPV1脱敏19。在这份手稿中,我们提出了注射和随后的疼痛测试的精确方案。

将药物直接注射到大脑心室,可以研究其中心效应,同时将任何外周效应降至最低。这里介绍的注射程序是海利和麦考密克20所报告的方法的修改。这种方法很简单,通过日冕缝合将注射针插入横向心室,不需要任何特殊设备或外科手术。

TRPV1激动剂的外围局部应用引起灼痛感和神经原发性炎症。用RTX和TRPV1-KO小鼠进行系统治疗的小鼠对这种刺激13不敏感。我们已对RTX(RTX测试)进行了植物内注射,以确认在RTX-i.c.v中保留外设TRPV1。小 鼠。此方法是常规形式测试21的修改

据报道,用RTX和TRPV1-KO小鼠进行系统治疗的小鼠表现出机械刺激11、13、22,13,的正常阈值。在这里,我们提出了一个尾压测试的程序,用于测试对乙酰氨基酚镇痛作用的变化。

所有这些程序都是正统和多才多艺的,可以应用于其他药物的研究。

Protocol

这里使用的所有实验协议都经过了武藏野大学动物护理和使用委员会的批准。雄性 ddY 小鼠(SLC,日本静冈)在12小时光/暗循环下保存至少7天,然后进行水和食物实验。实验使用了5周或6周大的老鼠。 1. 药物制备 Rtx注:酒精RTX溶液可引起严重皮肤灼伤和眼睛损伤。处理时,请务必使用橡胶手套和眼镜进行保护。此库存解决方案可使用 6 个月。 将…

Representative Results

i.c.v.治疗小鼠在外观、自发活动、体重19 和核心体温方面无明显异常(车辆治疗组,38.4~0.3 °C,n = 6;RTX 处理组,38.7 × 0.2 °C,n = 6)。 图2A-B-B显示了s.c.-或.c.v.治疗小鼠对RTX的植物内注射的响应能力。在10分19秒,经过车辆处理的老鼠的舔/咬行为非常显著。…

Discussion

在这些实验中,最关键的一步是注射成功。这里使用的 i.c.v. 注射技术非常简单,但需要一些练习。在实验之前,建议使用染料(例如盐碱中 0.5% 的蓝印)。如果注射执行正确,在日冕缝合上应明显有针斑,注射染料应存在于反边心室和第三心室。此外,在注射过程中应避免强行插入。如果针尖正确放置在牙冠缝合线上,针应顺利穿透头骨。

这种即认为技术也可以应用于清醒…

Declarações

The authors have nothing to disclose.

Acknowledgements

没有。

Materials

Resiniferatoxin LKT Laboratories R1774 used for s.c./i.c.v. pretreatments and the RTX test
Acetaminophen IWAKI SEIYAKU gifted from IWAKI SEIYAKU
Pentobarbital sodium salt Tokyo Chemical Industry P0776 used for anesthesia
Ethanol (99.5) Wako Pure Chemical Industries 057-00456 used for dissolving RTX
Polyoxyethylene(20) Sorbitan Monooleate Wako Pure Chemical Industries 161-21621 used for dissolving RTX
25 mL microsyringe Hamilton 1702LT used for i.c.v. injection
100 mL microsyringe Hamilton 1710LT used for intraplantar injection
26-gauge disposable needle TERUMO NN-2613S used for i.c.v. injection
30-gauge disposable needle NIPRO 01134 used for intraplantar injection
Pressure meter Ugo Basile Analgesy-Meter Type 7200 used for tail pressure test

Referências

  1. Cavanaugh, D. J., Chesler, A. T., Braz, J. M., Shah, N. M., Julius, D., Basbaum, A. I. Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J Neurosci. 31 (28), 10119-10127 (2011).
  2. Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 389 (6653), 816-824 (1997).
  3. Caterina, M. J., et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 288 (5464), 306-313 (2000).
  4. Starowicz, K., et al. Tonic endovanilloid facilitation of glutamate release in brainstem descending antinociceptive pathways. The Journal of neuroscience the official journal of the Society for Neuroscience. 27 (50), 13739-13749 (2007).
  5. Gavva, N. R., et al. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. The Journal of neuroscience the official journal of the Society for Neuroscience. 27 (13), 3366-3374 (2007).
  6. Marsch, R., et al. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. Journal of Neuroscience. 27 (4), 832-839 (2007).
  7. Tzavara, E. T., et al. Endocannabinoids activate transient receptor potential vanilloid 1 receptors to reduce hyperdopaminergia-related hyperactivity: Therapeutic implications. Biological Psychiatry. 59 (6), 508-515 (2006).
  8. Nazıroğlu, M., Övey, &. #. 3. 0. 4. ;. S. Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy. Neurociência. 293, 55-66 (2015).
  9. Mallet, C., et al. TRPV1 in brain is involved in acetaminophen-induced antinociception. PloS one. 5 (9), 1-11 (2010).
  10. Barrière, D. A., et al. Fatty acid amide hydrolase-dependent generation of antinociceptive drug metabolites acting on TRPV1 in the brain. PloS one. 8 (8), e70690 (2013).
  11. Jancsó, G., Kiraly, E., Jancsó-Gábor, A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature. 270 (5639), 741-743 (1977).
  12. Szallasi, A., Blumberg, P. M. Vanilloid receptor loss in rat sensory ganglia associated with long term desensitization to resiniferatoxin. Neuroscience Letters. 140 (1), 51-54 (1992).
  13. Cavanaugh, D. J., et al. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proceedings of the National Academy of Sciences of the United States of America. 106 (22), 9075-9080 (2009).
  14. Jeffry, J. A., Yu, S. Q., Sikand, P., Parihar, A., Evans, M. S., Premkumar, L. S. Selective targeting of TRPV1 expressing sensory nerve terminals in the spinal cord for long lasting analgesia. PLoS ONE. 4 (9), e7021 (2009).
  15. Jancsó, G. Intracisternal capsaicin: selective degeneration of chemosensitive primary sensory afferents in the adult rat. Neuroscience letters. 27 (1), 41-45 (1981).
  16. Gamse, R., Saria, A., Lundberg, J. M., Theodorsson-Norheim, E. Behavioral and neurochemical changes after intracisternal capsaicin treatment of the guinea pig. Neuroscience Letters. 64 (3), 287-292 (1986).
  17. Neubert, J. K., et al. Characterization of mouse orofacial pain and the effects of lesioning TRPV1-expressing neurons on operant behavior. Molecular pain. 4, 43 (2008).
  18. Karai, L., et al. Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. The Journal of clinical investigation. 113 (9), 1344-1352 (2004).
  19. Fukushima, A., Mamada, K., Iimura, A., Ono, H. Supraspinal-selective TRPV1 desensitization induced by intracerebroventricular treatment with resiniferatoxin. Scientific reports. 7 (1), 12452 (2017).
  20. Haley, T. J., McCormick, W. G. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. British journal of pharmacology and chemotherapy. 12 (1), 12-15 (1957).
  21. Tjølsen, A., Berge, O. G., Hunskaar, S., Rosland, J. H., Hole, K. The formalin test: an evaluation of the method. Pain. 51 (1), 5-17 (1992).
  22. Ohsawa, M., Miyabe, Y., Katsu, H., Yamamoto, S., Ono, H. Identification of the sensory nerve fiber responsible for lysophosphatidic acid-induced allodynia in mice. Neurociência. 247, 65-74 (2013).
  23. Tanabe, M., Tokuda, Y., Takasu, K., Ono, K., Honda, M., Ono, H. The synthetic TRH analogue taltirelin exerts modality-specific antinociceptive effects via distinct descending monoaminergic systems. British journal of pharmacology. 150 (4), 403-414 (2007).
  24. Ono, H., et al. Reduction in sympathetic nerve activity as a possible mechanism for the hypothermic effect of oseltamivir, an anti-influenza virus drug, in normal mice. Basic & clinical pharmacology & toxicology. 113 (1), 25-30 (2013).
  25. Kauer, J. A., Gibson, H. E. Hot flash: TRPV channels in the brain. Trends in neurosciences. 32 (4), 215-224 (2009).
check_url/pt/57570?article_type=t

Play Video

Citar este artigo
Fukushima, A., Fujii, M., Ono, H. Intracerebroventricular Treatment with Resiniferatoxin and Pain Tests in Mice. J. Vis. Exp. (163), e57570, doi:10.3791/57570 (2020).

View Video