Summary

牙种植体不同材料的口腔生物膜形成

Published: June 24, 2018
doi:

Summary

在这里, 我们提出了一个评估口腔生物膜形成的方法在钛和氧化锆材料的牙科修复台, 包括分析细菌细胞的生存能力和形态学特征。在口腔生物膜分析中采用了一种与功能强大的显微技术相关联的原位模型。

Abstract

牙科植入物及其修复成分容易发生细菌定植和生物膜形成。使用提供低微生物黏附力的材料可以减少围植病的患病率和进展。鉴于口腔环境的复杂性和口腔生物膜的异质性, 需要显微技术来对牙齿和牙科材料的表面进行生物膜分析。本文介绍了用于比较人工牙基钛和陶瓷材料的口腔生物膜形成的一系列协议, 以及在形态学和细胞层面分析口腔生物膜的方法。用原位模型评价钛和氧化锆材料在牙科修复体上的口腔生物膜形成这项研究为 48 h 生物膜提供了令人满意的保护, 从而证明了方法上的充分性。光子显微镜允许分析在测试材料上形成的生物膜的区域代表。此外, 利用多光子显微镜对显影和图像进行处理, 可以对非常异构的微生物种群中的细菌生存能力进行分析。电子显微镜生物标本的制备促进了生物膜的结构保存, 图像分辨率好, 无工件。

Introduction

细菌生物膜是复杂的, 功能上和结构上有组织的微生物群落, 其特点是多种微生物物种, 合成胞外, 生物活性高分子基质1,2。细菌粘附到生物或非的表面之前, 形成的获得的薄膜, 主要包括唾液糖蛋白1,3,4。微生物与薄膜之间的物理化学相互作用初步建立, 其次是获得的薄膜的细菌 adhesins 和糖蛋白受体之间的相互作用更强。微生物多样性逐渐增加, 通过 coaggregation 的次级殖民者的受体已经附着的细菌, 形成一个多种群社区1,3,4, 5

口腔微生物群的稳态及其与宿主的共生关系对维持口腔健康具有重要意义。口腔生物膜内的 dysbiosis 可能会增加龋病和牙周病25的发展风险。临床研究表明, 在牙齿或牙种植体上的生物膜积累与牙龈炎或周围种植体粘膜炎的形成有因果关系6,7。炎症过程的进展导致围 implantitis 和随后的损失种植体8

牙科植入物及其修复成分容易发生细菌定植和生物膜形成9。使用具有化学成分和表面形貌的材料, 提供低微生物黏附力, 可减少910围植体疾病的患病率和进展。钛是用于制造植入物的假肢基台的最常用材料;然而, 陶瓷材料最近被介绍了并且越来越受欢迎作为替代钛由于他们的审美特性和生物相容性11,12。同样重要的是, 陶瓷材料已经与一个假想的减少可能坚持微生物, 主要是由于其表面粗糙度, 润湿性, 和表面自由能源10,13

体外研究有助于了解微生物黏附力对修复桥台表面914151617的重要进展。然而, 口腔的动态环境, 其特点是其变化的温度和 pH 值和养分的可用性, 以及由存在的剪切力, 是不可再生的体外实验协议18, 19。为了克服这一问题, 另一种选择是使用原位模型的生物膜形成, 有利地保留其三维结构的体分析10,20,21,22,23,24

对口腔基质形成的生物膜复杂结构的分析需要使用能够显示光学致密物质25的显微技术。光子激光扫描显微镜是生物膜结构分析的现代选择26。它的特点是利用非线性光学光源接近红外波长, 脉冲到飞秒27。这一方法是为图像获取的荧光材料或显影标记的材料, 除了所产生的图像由非线性光学信号所衍生的现象称为第二次谐波产生。光子显微镜的优点之一是, 由于激发光强度的影响, 获得的最大图像深度为27

对于非生物表面生物膜的生物活性分析, 用光子显微镜观察, 在细菌细胞中使用不同光谱特征和渗透能力的荧光核酸染料需要28。显影 SYTO9 (绿荧光) 和碘碘 (红荧光) 可用于视觉分化的活菌和死细菌28,29,30。碘碘化物只穿透受损膜的细菌, 而 SYTO9 进入细菌细胞, 并有完整且受损的膜。当两种染料都存在于细胞内时, 碘碘对核酸有更强的亲和力, 并取代 SYTO9, 标志着红色28,30

鉴于口腔环境的复杂性和口腔生物膜的异质性, 需要显微技术来对牙齿和牙科材料表面进行生物膜分析。本文介绍了用于比较人工牙基钛和陶瓷材料的口腔生物膜形成的一系列协议, 以及在形态学和细胞层面分析口腔生物膜的方法。

Protocol

这项研究获得了 Ribeirão 欧鲁普雷图牙科学院机构审查委员会的批准, 志愿者参加者签署了书面同意书 (程序 2011.1. 371.583)。 1.原位生物膜形成 参加者的选择 根据以下纳入标准选择患者: 一个健康的个体, 有完整的牙列, 没有口腔疾病的临床症状。 根据以下排除标准排除病人: 怀孕、哺乳期、龋齿、牙周疾病或抗生素治疗在过去3月里, ?…

Representative Results

本研究以 48 h 的原位生长后生物膜的定植密度为依据, 用光子显微镜观察了钛和氧化锆圆盘上的占地面积与试样总扫描面积的比例 (26.64 毫米2)。图 2表示3测试材料表面的细菌定植密度。在铸件表面和在机械加工的钛盘 (分别为0.0292 µm2和0.0213 µm2) 上观察到的生物膜密度高于氧化锆圆盘 (0.0099 µm2;p < 0.05;克?…

Discussion

本文所述的协议是为了评价人工牙基钛和氧化锆材料的生物膜形成, 包括细菌细胞活力和形态学特征的分析。为了达到这一目的, 设计了一种生物膜形成的原位模型, 由口内装置组成, 能够容纳试验材料样品, 并使其暴露在动态口腔环境中48小时。该设备被认为是舒适和容易插入, 删除和清洁的志愿者。然而, 它对语音学和美学的影响甚少, 制作简单、成本低廉, 并使标本易于回收, 不破坏生物膜…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢 Maulin 从显微镜多用户实验室 (Ribeirão 欧鲁普雷图医学院) 的慷慨协助与 EDS 和 SEM 分析和老兄特谢拉马查多为他在视频版的慷慨技术援助。

Materials

Hydrogum 5 Zhermack Dental C302070
Durone IV Dentsply 17130500002
NiCr wire  Morelli 55.01.070
JET auto polymerizing acrylic Clássico
Dental wax  Clássico
Pressure pot  Essencedental
Sandpapers 600 grit NORTON T216
Sandpapers 1200 grit NORTON T401
Sandpapers 2000 grit NORTON T402
Metallographic Polishing Machine Arotec
Isopropyl alcohol SIGMA-ALDRICH W292907
Hot melt adhesive TECSIL PAH M20017
Filmtracer LIVE/DEAD Biofilm Viability Kit Invitrogen L10316
Pipette Tips, 10 µL KASVI K8-10  
Pipette Tips, 1,000 µL KASVI K8-1000B  
24-well plate  KASVI K12-024
Glass Bottom Dish Thermo Scientific 150680
AxioObserver inverted microscope  ZEISS
Chameleon vision ii laser Coherent
Objective EC Plan-Neofluar 40x/1.30 Oil DIC ZEISS 440452-9903-000
SDD sensors – X-Max 20mm² Oxford Instruments
Glutaraldehyde solution SIGMA-ALDRICH G5882
Sodium cacodylate Buffer  SIGMA-ALDRICH 97068 
Osmium tetroxide SIGMA-ALDRICH 201030
Na2HPO4 SIGMA-ALDRICH S9638 Used for preparation of phosphate buffered saline
KH2PO4 SIGMA-ALDRICH P9791 
NaCl MERK 1.06404
Kcl SIGMA-ALDRICH P9333 
Ethanol absolute for analysis EMSURE MERK 1.00983
CPD 030 Critical Point Dryer BAL-TEC
JSM-6610 Series Scanning Electron Microscope JEOL
SCD 050 Sputter Coater BAL-TEC

Referências

  1. Do, T., Devine, D., Marsh, P. D. Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics. Clinical, Cosmetic and Investigational Dentistry. 5, 11-19 (2013).
  2. Samaranayake, L., Matsubara, V. H. Normal Oral Flora and the Oral Ecosystem. Dental Clinics of North America. 61 (2), 199-215 (2017).
  3. Larsen, T., Fiehn, N. E. Dental biofilm infections – an update. Acta Pathologica, Microbiologica, et Immunologica Scandinavica. 125 (4), 376-384 (2017).
  4. Marsh, P. D., Do, T., Beighton, D., Devine, D. A. Influence of saliva on the oral microbiota. Periodontology 2000. 70 (1), 80-92 (2016).
  5. Marsh, P. D., Zaura, E. Dental biofilm: ecological interactions in health and disease. Journal of Clinical Periodontology. 44 Suppl 18, S12-S22 (2017).
  6. Zitzmann, N. U., Berglundh, T., Marinello, C. P., Lindhe, J. Experimental peri-implant mucositis in man. Journal of Clinical Periodontology. 28 (6), 517-523 (2001).
  7. Meyer, S., et al. Experimental mucositis and experimental gingivitis in persons aged 70 or over. Clinical and biological responses. Clinical Oral Implants Research. 28 (8), 1005-1012 (2017).
  8. Salvi, G. E., Cosgarea, R., Sculean, A. Prevalence and Mechanisms of Peri-implant Diseases. Journal of Dental Research. 96 (1), 31-37 (2017).
  9. Hahnel, S., Wieser, A., Lang, R., Rosentritt, M. Biofilm formation on the surface of modern implant abutment materials. Clinical Oral Implants Research. 26 (11), 1297-1301 (2015).
  10. Nascimento, C., et al. Bacterial adhesion on the titanium and zirconia abutment surfaces. Clinical Oral Implants Research. 25 (3), 337-343 (2014).
  11. Nakamura, K., Kanno, T., Milleding, P., Ortengren, U. Zirconia as a dental implant abutment material: a systematic review. The International Journal of Prosthodontics. 23 (4), 299-309 (2010).
  12. Scarano, A., Piattelli, M., Caputi, S., Favero, G. A., Piattelli, A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. Journal of Periodontology. 75 (2), 292-296 (2004).
  13. Nascimento, C., et al. Microbiome of titanium and zirconia dental implants abutments. Dental Materials. 32 (1), 93-101 (2016).
  14. Rimondini, L., Cerroni, L., Carrassi, A., Torricelli, P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. The International Journal of Oral & Maxillofacial Implants. 17 (6), 793-798 (2002).
  15. de Avila, E. D., Avila-Campos, M. J., Vergani, C. E., Spolidorio, D. M., Mollo Fde, A. Structural and quantitative analysis of a mature anaerobic biofilm on different implant abutment surfaces. Journal of Prosthetic Dentistry. 115 (4), 428-436 (2016).
  16. de Avila, E. D., et al. Impact of Physical Chemical Characteristics of Abutment Implant Surfaces on Bacteria Adhesion. Journal of Oral Implantology. 42 (2), 153-158 (2016).
  17. de Avila, E. D., et al. Effect of titanium and zirconia dental implant abutments on a cultivable polymicrobial saliva community. Journal of Prosthetic Dentistry. 118 (4), 481-487 (2017).
  18. Lin, N. J. Biofilm over teeth and restorations: What do we need to know?. Dental Materials. 33 (6), 667-680 (2017).
  19. Prada-Lopez, I., Quintas, V., Tomas, I. The intraoral device of overlaid disk-holding splints as a new in situ oral biofilm model. Journal of Clinical and Experimental Dentistry. 7 (1), e126-e132 (2015).
  20. Prada-Lopez, I., Quintas, V., Vilaboa, C., Suarez-Quintanilla, D., Tomas, I. Devices for in situ Development of Non-disturbed Oral Biofilm. A Systematic Review. Frontiers in Microbiology. 7, 1055 (2016).
  21. Burgers, R., et al. In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clinical Oral Implants Research. 21 (2), 156-164 (2010).
  22. do Nascimento, C., et al. Oral biofilm formation on the titanium and zirconia substrates. Microscopy Research and Technique. 76 (2), 126-132 (2013).
  23. Al-Ahmad, A., et al. In vivo study of the initial bacterial adhesion on different implant materials. Archives of Oral Biology. 58 (9), 1139-1147 (2013).
  24. Al-Ahmad, A., et al. Bacterial adhesion and biofilm formation on yttria-stabilized, tetragonal zirconia and titanium oral implant materials with low surface roughness – an in situ study. Journal of Medical Microbiology. 65 (7), 596-604 (2016).
  25. Thomsen, H., et al. Delivery of cyclodextrin polymers to bacterial biofilms – An exploratory study using rhodamine labelled cyclodextrins and multiphoton microscopy. International Journal of Pharmaceutics. 531 (2), 650-657 (2017).
  26. Lakins, M. A., Marrison, J. L., O’Toole, P. J., van der Woude, M. W. Exploiting advances in imaging technology to study biofilms by applying multiphoton laser scanning microscopy as an imaging and manipulation tool. Journal of Microscopy. 235 (2), 128-137 (2009).
  27. Zipfel, W. R., Williams, R. M., Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology. 21 (11), 1369-1377 (2003).
  28. Stocks, S. M. Mechanism and use of the commercially available viability stain, BacLight. Cytometry Part A. 61 (2), 189-195 (2004).
  29. Johnson, M. B., Criss, A. K. Fluorescence microscopy methods for determining the viability of bacteria in association with mammalian cells. Journal of Visualized Experiments. (79), e50729 (2013).
  30. Stiefel, P., Schmidt-Emrich, S., Maniura-Weber, K., Ren, Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiology. 15, 36 (2015).
  31. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  32. Placko, H. E., Mishra, S., Weimer, J. J., Lucas, L. C. Surface characterization of titanium-based implant materials. The International Journal of Oral & Maxillofacial Implants. 15 (3), 355-363 (2000).
  33. So, P. T., Dong, C. Y., Masters, B. R., Berland, K. M. Two-photon excitation fluorescence microscopy. Annual Review of Biomedical Engineering. 2, 399-429 (2000).
  34. Benninger, R. K., Piston, D. W. Two-photon excitation microscopy for the study of living cells and tissues. Current Protocols in Cell Biology. , 11-24 (2013).
  35. Gardi, J. E., Nyengaard, J. R., Gundersen, H. J. The proportionator: unbiased stereological estimation using biased automatic image analysis and non-uniform probability proportional to size sampling. Computers in Biology and Medicine. 38 (3), 313-328 (2008).
  36. Melvin, N. R., Poda, D., Sutherland, R. J. A simple and efficient alternative to implementing systematic random sampling in stereological designs without a motorized microscope stage. Journal of Microscopy. 228 (Pt 1), 103-106 (2007).
  37. Neu, T. R., Kuhlicke, U., Lawrence, J. R. Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms. Applied and Environmental Microbiology. 68 (2), 901-909 (2002).
  38. Neu, T. R., Woelfl, S., Lawrence, J. R. Three-dimensional differentiation of photo-autotrophic biofilm constituents by multi-channel laser scanning microscopy (single-photon and two-photon excitation). Journal of Microbiological Methods. 56 (2), 161-172 (2004).
  39. Neu, T. R., Lawrence, J. R. Innovative techniques, sensors, and approaches for imaging biofilms at different scales. Trends in Microbiology. 23 (4), 233-242 (2015).
  40. Lacroix-Gueu, P., Briandet, R., Leveque-Fort, S., Bellon-Fontaine, M. N., Fontaine-Aupart, M. P. In situ measurements of viral particles diffusion inside mucoid biofilms. Comptes Rendus Biologies. 328 (12), 1065-1072 (2005).
  41. Briandet, R., et al. Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Applied and Environmental Microbiology. 74 (7), 2135-2143 (2008).
  42. Berney, M., Hammes, F., Bosshard, F., Weilenmann, H. U., Egli, T. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Applied and Environmental Microbiology. 73 (10), 3283-3290 (2007).
  43. Bergmans, L., Moisiadis, P., Van Meerbeek, B., Quirynen, M., Lambrechts, P. Microscopic observation of bacteria: review highlighting the use of environmental SEM. International Endodontic Journal. 38 (11), 775-788 (2005).
  44. Hannig, C., Follo, M., Hellwig, E., Al-Ahmad, A. Visualization of adherent micro-organisms using different techniques. Journal of Medical Microbiology. 59 (Pt 1), 1-7 (2010).
  45. Knutton, S. Electron microscopical methods in adhesion. Methods in Enzymology. 253, 145-158 (1995).
  46. Fischer, E. R., Hansen, B. T., Nair, V., Hoyt, F. H., Dorward, D. W. Scanning electron microscopy. Current Protocols in Microbiology. , (2012).
check_url/pt/57756?article_type=t

Play Video

Citar este artigo
Silva, T. S. O., Freitas, A. R., Pinheiro, M. L. L., do Nascimento, C., Watanabe, E., Albuquerque, R. F. Oral Biofilm Formation on Different Materials for Dental Implants. J. Vis. Exp. (136), e57756, doi:10.3791/57756 (2018).

View Video