Summary

原发性细胞衰老的诱导与鉴定

Published: June 20, 2018
doi:

Summary

在这里, 我们讨论了一系列的诱导和确认细胞衰老在培养细胞的协议。我们专注于不同的衰老诱发刺激, 并描述了常见的衰老相关标记的量化。我们提供的技术细节, 以成纤维细胞作为模型, 但协议可以适应各种细胞模型。

Abstract

细胞衰老是一种永久性细胞周期停止激活的反应, 以应对不同的破坏性刺激。细胞衰老的活化是各种病理生理条件的标志, 包括肿瘤抑制、组织重塑和衰老。细胞衰老的诱导体在体内仍然缺乏特征。然而, 一些刺激可以用来促进细胞衰老体。其中, 最常见的衰老诱导因子是复制衰竭, 电离和非电离辐射, 毒性药物, 氧化应激, 去甲基化和乙酰剂。在这里, 我们将提供有关如何使用这些刺激诱导成纤维细胞衰老的详细说明。该协议可以很容易地适应不同类型的主要细胞和细胞系, 包括癌细胞。我们还描述了不同的方法来验证衰老诱导。特别是, 我们专注于测量溶酶体与衰老相关的β-乳糖酶 (SA β-加仑) 的活性, 使用 5-乙炔-2 ‘-脱氧尿苷 () 的 DNA 合成率, 细胞周期的表达水平抑制剂 p16 和 p21, 以及衰老相关分泌表型 (SASP) 成员的表达和分泌。最后, 给出了实例结果, 并讨论了这些协议的进一步应用。

Introduction

在 1961年, 佛烈克和穆尔黑德报告说, 在连续1段后, 培养的主要成纤维细胞失去了增殖潜能。这一过程是由每细胞分裂后端粒的顺序缩短引起的。当端粒到达临界短的长度时, 它们被 DNA 损伤反应 (DDR) 所识别, 它激活了不可逆转的增殖–也被定义为复制衰老。复制衰老是目前已知的许多刺激之一, 导致一个永久性细胞周期逮捕的状态, 使细胞不敏感的 mitogens 和凋亡信号2,3。衰老程序通常的特点是额外的功能, 包括高溶酶活性, 线粒体功能障碍, 核变化, 染色质重组, 内质网应力, DNA 损伤和衰老相关分泌表型 (SASP)3,4。衰老细胞在体内具有多种功能: 发育、创面愈合和肿瘤抑制2。同样, 众所周知, 它们在衰老和肿瘤进展5中起着重要的作用。衰老的消极和部分矛盾的影响通常归因于 SASP6

最近, 它表明, 消除衰老细胞的小鼠导致寿命延长和消除许多老化功能7,8,9,10,11,12. 同样, 已经开发了多种药物, 以消除衰老细胞 (senolytics) 或靶向 SASP13,14。抗衰老治疗潜力最近引起了人们的广泛关注。

对细胞衰老相关机制的研究和药理干预的筛选严重依赖于体外模型, 特别是在人原代成纤维细胞中。虽然不同的衰老诱导因子激活了一些共同的特征, 但衰老表型的大变异性被观察到, 并依赖于各种因素, 包括细胞类型, 刺激和时间点3,15, 16,17。研究和定位衰老细胞的异质性是当务之急。因此, 本议定书的目的是提供一系列方法, 以诱发衰老的主要成纤维细胞使用不同的治疗。正如它将解释, 这些方法可以很容易地适应其他细胞类型。

除了复制衰老, 我们还描述了其他五种衰老诱导治疗: 电离辐射, 紫外线 (紫外线) 辐射, 阿霉素, 氧化应激和后生变化 (即促进组蛋白乙酰化或 DNA 去甲基化).电离辐射和紫外线辐射直接导致 DNA 损伤, 并在适当剂量下引发衰老18,19。阿霉素还导致衰老主要是通过锂 dna 损伤的 dna 和干扰拓扑异构酶 II 功能, 从而停止 DNA 修复机制20。衰老的关键基因表达通常由组蛋白乙酰化和 DNA 甲基化控制。因此, 组蛋白乙酰抑制剂 (丁酸钠和萨哈) 和 DNA 去甲基化 (例如, 5-aza) 剂会导致正常细胞21,22的衰老。

最后, 与衰老细胞相关的四种最常见的标记将被解释为: 衰老相关的乳糖酶 (SA β) 的活性、由免疫组织测定的 DNA 合成率、细胞周期调节器的过度表达和细胞周期蛋白依赖性激酶抑制剂 p16 和 p21, 并表达和分泌的 SASP 成员。

Protocol

1. 一般准备 准备 D10 培养基。补充 DMEM 中 Glutamax 与10% 血清和1% 青霉素/链霉素 (最后浓度: 100 U/毫升)。 准备无菌 PBS。根据制造商的指示, 在水中溶解药片。用高压釜消毒。 准备1x 胰蛋白酶。稀释5毫升的胰蛋白酶-Versene EDTA/10x 1:10 在45毫升的无菌 PBS。注意: 在整个协议中, 我们使用的细胞培养条件, 更接近的生理条件, 主要成纤维细胞。这意味着, 我们孵化的细胞在37摄?…

Representative Results

衰老成纤维细胞中 SA β-gal 染色的富集 β-乳糖酶 (β-加仑) 是一种酶, 表达在所有细胞和具有最佳 pH 值为 4.025,26。然而, 在衰老过程中, 溶酶体体积增大, 衰老细胞积累β-加仑。这种酶的增加使它有可能检测到它的活性, 即使在次优 pH 值 6.025,27?…

Discussion

这里解释的协议被优化了为人的主要成纤维细胞, 特别是 BJ 和 WI-38 细胞。复制衰老, 电离辐射和阿霉素的协议已成功地应用于其他类型的成纤维细胞 (HCA2 和 IMR90) 和其他细胞类型 (即新生儿黑色素细胞和角质形成素或 iPSC 衍生心肌细胞)在我们的实验室里。然而, 可以通过调整一些细节, 如种子细胞数量, 方法和化学物质来帮助细胞附着/分离到塑料支架上, 以及治疗的剂量以避免毒性, 来优化其他细?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢 Demaria 实验室的成员进行了卓有成效的讨论, 并 Thijmen van 弗利特共享关于紫外线诱发衰老的数据和协议。

Materials

DMEM Media – GlutaMAX Gibco 31966-047
Fetal Bovine Serum Hyclone SV30160.03
Penicillin-Streptomycin (P/S; 10,000 U/ml) Lonza DE17-602E
Dimethyl Sulfoxide (DMSO) Sigma-Aldrich SC-202581
Nuclease-Free Water (not DEPC-Treated) Ambion AM9937
T75 flask Sarstedt 833911002
Trypsin/EDTA Solution Lonza CC-5012
PBS tablets Gibco 18912-014
1.5 ml microcentrifuge tubes Sigma-Aldrich T9661-1000EA
Corning 15 mL centrifuge tubes Sigma-Aldrich CLS430791
6-well plate Sarstedt 83.3920
24-well plate Sarstedt 83.3922
13mm round coverslips Sarstedt 83.1840.002
Steriflip Merck Chemicals SCGP00525
Cesium137-source IBL 637 Cesium-137γ-ray machine
UV radiation chamber Opsytec, Dr. Göbel BS-02
Doxorubicin dihydrochloride  BioAustralis Fine Chemicals BIA-D1202-1
Hydrogen peroxide solution Sigma-Aldrich 7722-84-1
5-aza-2’-deoxycytidine Sigma-Aldrich A3656
SAHA Sigma-Aldrich SML0061
Sodium Butyrate  Sigma-Aldrich B5887
X-gal (5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside) Fisher Scientific 7240-90-6
Citric acid monohydrate Sigma-Aldrich 5949-29-1
Sodium dibasic phosphate Acros organics 7782-85-6
Potassium ferrocyanide  Fisher Scientific 14459-95-1
Potassium ferricyanide Fisher Scientific 13746-66-2
Sodium Chloride Merck Millipore 7647-14-5
Magnesium Chloride Fisher Chemicals 7791-18-6
25% glutaraldehyde Fisher Scientific 111-30-8,7732-18-5
16% formaldehyde (w/v) Thermo-Fisher Scientific 28908
EdU (5-ethynyl-2’-deoxyuridine) Lumiprobe 10540
Sulfo-Cyanine3 azide (Sulfo-Cy3-Azide) Lumiprobe D1330
Sodium ascorbate Sigma-Aldrich A4034
Copper(II) sulfate pentahydrate (Cu(II)SO4.5H2O) Sigma-Aldrich 209198
Triton X-100 Acros organics 215682500
TRIS base Roche 11814273001
LightCycler 480 Multiwell Plate 384, white  Roche 4729749001
Lightcycler 480 sealing foil  Roche 4729757001
Sensifast Probe Lo-ROX kit  Bioline BIO-84020
UPL Probe Library Sigma-Aldrich Various
Human IL-6 DuoSet ELISA R&D D6050
Bio-Rad TC20 Bio-Rad
Counting slides Bio-Rad 145-0017
Dry incubator Thermo-Fisher Scientific Heratherm
Dimethylformamide Merck Millipore 1.10983
Parafilm 'M' laboratory film Bemis  #PM992
Tweezers
Needles

Referências

  1. Hayflick, L., Moorhead, P. S. The serial cultivation of human diploid cell strains. Experimental Cell Research. 25, 585-621 (1961).
  2. Muñoz-Espín, D., Serrano, M. Cellular senescence: from physiology to pathology. Nature reviews. Molecular cell biology. 15, 482-496 (2014).
  3. Sharpless, N. E., Sherr, C. J. Forging a signature of in vivo senescence. Nature Reviews Cancer. 15 (7), 397-408 (2015).
  4. Correia-Melo, C., et al. Mitochondria are required for pro-ageing features of the senescent phenotype. The EMBO Journal. 10, e201592862 (2016).
  5. Loaiza, N., Demaria, M. Cellular senescence and tumor promotion: Is aging the key?. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer. , (2016).
  6. Coppe, J. P., et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biology. 6 (12), 2853-2868 (2008).
  7. Baker, D. J., et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 530 (7589), 184-189 (2016).
  8. Xu, M., et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife. 4, e12997 (2015).
  9. Baker, D. J., et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 479 (7372), 232-236 (2011).
  10. Jeon, O. H., et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature Medicine. 23 (6), 775-781 (2017).
  11. Demaria, M., et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discovery. 7 (2), 165-176 (2017).
  12. Chang, J., et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine. 22 (1), 78-83 (2016).
  13. Soto-Gamez, A., Demaria, M. Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today. 22 (5), 786-795 (2017).
  14. Childs, B. G., et al. Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery. 16 (10), 718-735 (2017).
  15. Marthandan, S., et al. Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence. Biological Research. 49, 34 (2016).
  16. Marthandan, S., et al. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS One. 11 (5), e0154531 (2016).
  17. Hernandez-Segura, A., et al. Unmasking Transcriptional Heterogeneity in Senescent Cells. Current Biology. 27 (17), 2652-2660 (2017).
  18. Le, O. N., et al. Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell. 9 (3), 398-409 (2010).
  19. Hall, J. R., et al. C/EBPalpha regulates CRL4(Cdt2)-mediated degradation of p21 in response to UVB-induced DNA damage to control the G1/S checkpoint. Cell Cycle. 13 (22), 3602-3610 (2014).
  20. Nitiss, J. L. Targeting DNA topoisomerase II in cancer chemotherapy. Nature Reviews Cancer. 9 (5), 338-350 (2009).
  21. Pazolli, E., et al. Chromatin remodeling underlies the senescence- associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Pesquisa do Câncer. 72, 2251-2261 (2012).
  22. Venturelli, S., et al. Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumor cells. Molecular Cancer Therapeutics. 12, 2226-2236 (2013).
  23. Tennant, J. R. Evaluation of the Trypan Blue Technique for Determination of Cell Viability. Transplantation. 2, 685-694 (1964).
  24. Livak, K. J., Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25 (4), 402-408 (2001).
  25. Lee, B. Y., et al. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell. 5, 187-195 (2006).
  26. Kopp, H. G., Hooper, A. T., Shmelkov, S. V., Rafii, S. Beta-galactosidase staining on bone marrow. The osteoclast pitfall. Histology and Histopathology. 22 (9), 971-976 (2007).
  27. Dimri, G. P., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences. 92 (20), 9363-9367 (1995).
  28. Salic, A., Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proceedings of the National Academy of Sciences. 105 (7), 2415-2420 (2008).
  29. Sherr, C. J., McCormick, F. The RB and p53 pathways in cancer. Cancer Cell. 2 (2), 103-112 (2002).
  30. Bunz, F., et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 282 (5393), 1497-1501 (1998).
  31. Severino, J., Allen, R. G., Balin, S., Balin, A., Cristofalo, V. J. Is beta-galactosidase staining a marker of senescence in vitro and in vivo. Experimental Cell Research. 257 (1), 162-171 (2000).
  32. Stolzing, A., Coleman, N., Scutt, A. Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Research. 9 (1), 31-35 (2006).
  33. Blazer, S., et al. High glucose-induced replicative senescence: point of no return and effect of telomerase. Biochemical and Biophysical Research Communications. 296 (1), 93-101 (2002).
  34. Wiley, C. D., Campisi, J. From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence. Cell Metabolism. 23 (6), 1013-1021 (2016).
  35. Kumar, R., Gont, A., Perkins, T. J., Hanson, J. E. L., Lorimer, I. A. J. Induction of senescence in primary glioblastoma cells by serum and TGFbeta. Scientific Reports. 7 (1), 2156 (2017).
  36. Hypoxia Blagosklonny, M. V. MTOR and autophagy: converging on senescence or quiescence. Autophagy. 9 (2), 260-262 (2013).
  37. Meuter, A., et al. Markers of cellular senescence are elevated in murine blastocysts cultured in vitro: molecular consequences of culture in atmospheric oxygen. Journal of Assisted Reproduction and Genetics. 31 (10), 1259-1267 (2014).
  38. Coppe, J. P., et al. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One. 5 (2), e9188 (2010).
  39. van Deursen, J. M. The role of senescent cells in ageing. Nature. 509 (7501), 439-446 (2014).
  40. Kim, Y. M., et al. Implications of time-series gene expression profiles of replicative senescence. Aging Cell. 12, 622-634 (2013).
check_url/pt/57782?article_type=t

Play Video

Citar este artigo
Hernandez-Segura, A., Brandenburg, S., Demaria, M. Induction and Validation of Cellular Senescence in Primary Human Cells. J. Vis. Exp. (136), e57782, doi:10.3791/57782 (2018).

View Video