Summary

高效纯化和基于 LC ms/ms 的十-十一 Translocation-2 5-甲基胞嘧啶酶的检测开发

Published: October 15, 2018
doi:

Summary

在这里, 我们提出了一个有效的单步纯化活性无标签人的协议十-十一 translocation-2 (TET2) 5-甲基胞嘧啶酶使用离子交换色谱法及其测定液相色谱-串联质量基于质谱 (LC-ms) 的方法。

Abstract

5-甲基胞嘧啶 (5mC) 介导的表观遗传转录调控在真核发育中起着至关重要的作用。这些表观遗传标记的去甲基化是通过顺序氧化十-十一易位芳香烃 (TET1-3), 其次是胸腺嘧啶 DNA glycosylase 依赖基础切除修复。由于基因突变或其他表观遗传机制, TET2 基因的失活与不同癌症, 特别是造血恶性肿瘤患者预后较差有关。在这里, 我们描述了一个有效的单步纯化酶活性无标签人 TET2 酶使用阳离子交换层析。我们进一步提供液相色谱-串联质谱 (LC ms/ms) 方法, 可以分离和量化四个正常的 DNA 基础 (a, T, G 和 C), 以及四个改性胞嘧啶碱基 (5-甲基, 5-羟甲基, 5-甲酰基, 和 5-羧基)。本试验可用于评价野生型和突变 TET2 芳香烃的活性。

Introduction

在 CpG 二核苷酸内胞嘧啶碱基的 C5 位置是哺乳动物基因组1中主要的甲基化部位 (5mCpG)。此外, 一些最近的研究发现在非 CpG 站点 (5mCpH, 其中 H = a, T, 或 C)2,3的广泛 C5 胞嘧啶甲基化 (5mC)。5mC 修饰在内源座子和基因促进剂345中用作转录消声器。5mC DNA 甲基化在 X 染色体失活、基因印迹、核重编程和组织特异基因表达567等方面也起着重要作用。C5 位置的胞嘧啶甲基化是由 DNA 甲基转移酶进行的, 而这些酶的突变导致重大发育缺陷8。5mC 标记的去除由 TET1-3 5mC 氧化酶910启动。这些春节家庭芳香烃通过连续氧化步骤11,12,13转换5mC 到 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) 和 5-carboxylcytosine (5caC)。最后, 胸腺嘧啶 DNA glycosylase 替代5fC 或5caC 到未修改的胞嘧啶使用基础切除修复途径11

人类TET2基因被确定为在不同的造血恶性肿瘤, 包括骨髓增生异常综合征 (mds)14,15,16, mds-骨髓增生性肿瘤经常突变的基因 (mds-mpn) 和急性髓系白血病 (AML) 源自 mds 和 mds-MPN16。与野生型 (wt) TET214相比, TET2 突变患者骨髓 DNA 的5hmC 修饰水平较低。一些小组已经开发出 TET2-knockout 小鼠模型, 以阐明其在正常造血和髓样转化中的作用17,18,19,20。这些在 TET2 基因突变的小鼠最初是正常和可行的, 但表现出不同的造血恶性肿瘤, 因为他们的年龄导致他们的早期死亡。这些研究表明 wt-TET2 在正常造血分化中发挥的重要作用。在这些小鼠模型中, 杂合造血干细胞 (TET2+/造血干细胞) 和纯合 TET2造血干细胞在 wt-TET2 造血谱系中具有优于纯合造血干细胞重新填充的竞争优势, 同时 TET2TET2 造血干细胞开发了多种造血恶性肿瘤17,18。这些研究表明, TET2 酶的 haploinsufficiency 改变了造血干细胞的发展, 导致了造血恶性肿瘤。

与 TET2 基因突变的小鼠相似, 大多数白血病患者 haploinsufficiency TET2 酶活动的表现。这些主要杂合体细胞突变包括帧移位和废话突变分散在整个 TET2 基因体内, 而错义突变是最聚集在酶领域12。到目前为止, 文献中很少有关于 wt 和 mutant-TET2 的表征, 主要是由于 TET2 酶的生产和测定21的困难。在这里, 我们报告了一个简单的单步纯化原生 TET2 酶使用离子交换色谱法。进一步, 对 TET2 酶的酶活性进行了优化, 并进行了定量的 LC-ms/ms 测定。

Protocol

1. 无标记人 TET2 酶的克隆和纯化 使用特定于站点的重组技术将人类 TET2 酶 (TET2 1129-1936、Δ1481-1843) 克隆到 pDEST14 目标向量中, 如前所述22。注意: 以前的研究表明, C 终端 TET2 酶 (TET2 1129-1936, Δ1481-1843) 域是最小催化活动域21,23。为了用 pDONR221 向量表达未标记的 TET2 酶域, 在 PCR 过程中将发光达尔加诺和科扎克序列合并到正向底漆…

Representative Results

芳香烃5mC 在 DNA 中的动态修饰在表观遗传转录规则中起着重要作用。TET2 酶在不同的造血恶性肿瘤12经常变异。为了研究 TET2 酶在正常发育和疾病中的作用, 我们克隆了其最小催化活性域, 而没有任何亲和标记进入 pDEST14 向量22。在细菌大肠杆菌BL21 (DE3) 细胞中, 通过 SDS-页分析, 在∼5% 的总可溶性蛋白中生成无标记 TET2 酶。由于 TET2 ?…

Discussion

TET2 基因突变是在不同的造血恶性肿瘤患者中发现的最常见的遗传变化。到目前为止, 数以百计的不同的 TET2 突变, 其中包括废话, 帧移位, 和错义突变, 已确定在患者12。与 wt-TET214相比, TET2突变的患者在骨髓中的基因组5hmC 水平低。突变TET2实验概括了这些突变对转染细胞中5hmC 水平的影响14。结果 TET2-knockout 小鼠模型表明, TET2 酶水?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究由美国国防部资助的形式的想法奖 (W81XWH-13-1-0174), 再生障碍性贫血 & MDS 基金会赠款, 和 UMRB 授予 M.M. 作者感谢莫希特贾斯瓦尔和 Subhradeep 巴尔在 TET2 向量的初始克隆 pDEST14。

Materials

HEPES Carbosynth FH31182
Iron(II) sulfate heptahydrate Sigma-Aldrich F8633
α-Ketoglutaric acid (2-Oxoglutaric acid) Sigma-Aldrich K1750
L-Ascorbic acid Sigma-Aldrich A4544
Ethylenediaminetetraacetic acid disodium salt dihydrate Sigma-Aldrich E5134
Ammonium acetate Sigma-Aldrich A1542
Acetonitrile Fisher Scientific 75-05-8
HPLC grade water Fisher Scientific 7732-18-5
Oligo clean and concentrator Zymo Research D4061
DNAse I New England Biolabs M0303S
S1 Nuclease Thermo Scientific ENO321
CIAP (Calf intestinal alkaline phosphatase) New England Biolabs M0290S
LB Media Affymetrix J75852
IPTG Carbosynth EI05931
MES [2-(N-Morpholino)ethanesulfonic acid monohydrate] Carbosynth FM37015
Sodium chloride Fisher Scientific 7647-14-5
Glycerol Sigma-Aldrich G7893
SP Sepharose Fisher Scientific 45-002-934
2'-Deoxy-5-methylcytidine TCI D3610
2'-Deoxy-5-hydroxymethyalcytidine TCI D4220
2'-Deoxycytidine-5-carboxylic acid, sodium salt Berry & Associates PY 7593
5-Formyl-2'-deoxycytidine Berry & Associates PY 7589
2'-Deoxycytidine Berry & Associates PY 7216
2'-Deoxyadenosine Carbosynth ND04011
2'-Deoxyguanosine Carbosynth ND06306
2'-Deoxythymidine VWR Life Science 97061-764
Gateway technology Thermo Fisher 11801016
Beckman Allegra X-15R centrifuge  Beckman Coulter 392932
Sonic Dismembrator 550 Fisher Scientific XL2020
ÄKTA FPLC system Pharmacia (GE Healthcare) 18116468
FreeZone 4.5 freeze dry system Labconco 7750020
Zymo Oligo purification columns  Zymo Research D4061
BDS Hypersil C18 column Keystone Scientific, INC 105-46-3
3200 Q-Trap mass spectrometer AB Sciex
HPLC  Shimadzu HPLC 
XK16/20 FPLC column Pharmacia (GE Healthcare) 28988937

Referências

  1. Suzuki, M. M., Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nature reviews. Genetics. 9, 465-476 (2008).
  2. Lister, R., et al. Global epigenomic reconfiguration during mammalian brain development. Science. 341, 1237905 (2013).
  3. Guo, J. U., et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nature neuroscience. 17, 215-222 (2014).
  4. Jaenisch, R., Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature genetics. 33, 245-254 (2003).
  5. Schultz, M. D., et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature. 523, 212-216 (2015).
  6. Bonasio, R., Tu, S., Reinberg, D. Molecular signals of epigenetic states. Science. 330, 612-616 (2010).
  7. Feng, S., Jacobsen, S. E., Reik, W. Epigenetic reprogramming in plant and animal development. Science. 330, 622-627 (2010).
  8. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 447, 425-432 (2007).
  9. Iyer, L. M., Tahiliani, M., Rao, A., Aravind, L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle. 8, 1698-1710 (2009).
  10. Tahiliani, M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 324, 930-935 (2009).
  11. He, Y. F., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 333, 1303-1307 (2011).
  12. Ponnaluri, V. K., Maciejewski, J. P., Mukherji, M. A mechanistic overview of TET-mediated 5-methylcytosine oxidation. Biochemical and biophysical research communications. 436, 115-120 (2013).
  13. Tamanaha, E., Guan, S., Marks, K., Saleh, L. Distributive Processing by the Iron(II)/alpha-Ketoglutarate-Dependent Catalytic Domains of the TET Enzymes Is Consistent with Epigenetic Roles for Oxidized 5-Methylcytosine Bases. Journal of the American Chemical Society. 138, 9345-9348 (2016).
  14. Ko, M., et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 468, 839-843 (2010).
  15. Langemeijer, S. M., et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 41, 838-842 (2009).
  16. Smith, A. E., et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 116, 3923-3932 (2010).
  17. Moran-Crusio, K., et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 20, 11-24 (2011).
  18. Quivoron, C., et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 20, 25-38 (2011).
  19. Li, Z., et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 118, 4509-4518 (2011).
  20. Ko, M., et al. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proceedings of the National Academy of Sciences of the United States of America. 108, 14566-14571 (2011).
  21. Hu, L., et al. Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell. 155, 1545-1555 (2013).
  22. Jaiswal, M., et al. Convenient expression, purification and quantitative liquid chromatography-tandem mass spectrometry-based analysis of TET2 5-methylcytosine demethylase. Protein expression and purification. 132, 143-151 (2017).
  23. Hu, L., et al. Structural insight into substrate preference for TET-mediated oxidation. Nature. 527, 118-122 (2015).
  24. Mukherji, M., et al. Structure-function analysis of phytanoyl-CoA 2-hydroxylase mutations causing Refsum’s disease. Hum Mol Genet. 10, 1971-1982 (2001).
  25. Mukherji, M., et al. Chemical co-substrate rescue of phytanoyl-Co A 2-hydroxylase (PAHX) mutants causing adult Refsum’s disease. Chem Comm. , 972-973 (2001).
  26. Mukherji, M., Kershaw, N. J., Schofield, C. J., Wierzbicki, A. S., Lloyd, M. D. Utilization of sterol carrier protein-2 by phytanoyl-CoA 2-hydroxylase in the peroxisomal alpha oxidation of phytanic acid. Chem Biol. 9, 597-605 (2002).
  27. Zhang, T., et al. TET2 expression is a potential prognostic and predictive biomarker in cytogenetically normal acute myeloid leukemia. Journal of cellular physiology. , (2017).
  28. Montagner, S., et al. TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities. Cell Rep. 15, 1566-1579 (2016).
  29. Blaschke, K., et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 500, 222-226 (2013).
check_url/pt/57798?article_type=t

Play Video

Citar este artigo
Bhattacharya, C., Dey, A. S., Ayon, N. J., Gutheil, W. G., Mukherji, M. Efficient Purification and LC-MS/MS-based Assay Development for Ten-Eleven Translocation-2 5-Methylcytosine Dioxygenase. J. Vis. Exp. (140), e57798, doi:10.3791/57798 (2018).

View Video