Summary

大鼠运动皮质微电极植入所致功能缺损的啮齿动物行为检测

Published: August 18, 2018
doi:

Summary

我们已经表明, 在大鼠的运动皮层的微电极植入导致立即和持久的运动缺陷。本文提出的方法概述了微电极植入手术和三啮齿目动物行为任务, 以阐明由于植入造成的运动皮层损伤的细微或总运动功能的潜在变化。

Abstract

植入大脑的医疗器械拥有巨大的潜能。作为脑机接口 (BMI) 系统的一部分, intracortical 电极显示了从单个或小群神经元记录动作电位的能力。这种记录的信号已成功地被用来让病人与计算机、机器人四肢和四肢接触或控制。然而, 以前的动物研究表明, 大脑中的微电极植入不仅会损伤周围的组织, 还会导致功能缺陷。在这里, 我们讨论了一系列的行为测试, 以量化潜在的运动损伤后, 植入 intracortical 电极到运动皮层的大鼠。开放领域网格、阶梯交叉和抓握强度测试的方法为微电极植入产生的潜在并发症提供了有价值的信息。行为测试的结果与端点组织学相关, 提供了有关此过程对相邻组织的病理结果和影响的补充信息。

Introduction

Intracortical 电极最初用于绘制大脑的电路, 并已发展成为一个有价值的工具, 使检测的马达意图, 可用于产生功能输出1。检测到的功能输出可以为患有脊髓损伤、脑瘫、肌萎缩侧索硬化 (ALS) 或其他运动限制条件的人提供计算机光标23或机器人的控制手臂4,5,6, 或恢复功能到自己的残疾肢体7。因此, intracortical 微电极技术已成为一个有希望和快速增长的领域8

由于该领域的成功, 临床研究正在进行, 以改善和更好地了解 BMI 技术的可能性5,9,10。通过实现与大脑神经元的充分沟通潜能, 康复应用被认为是无限的8。虽然对 intracortical 微电极技术的未来有很大的乐观, 但也众所周知, 电极最终会失败11, 可能是由于植入后的急性 neuroinflammatory 反应。在大脑中植入异物会立即损害周围组织, 导致 neuroinflammatory 反应造成的进一步损害, 这取决于植入物12的特性。此外, 大脑中的植入物可能导致 microlesion 的效果: 由于设备插入13导致的急性水肿和出血, 糖代谢减少。此外, 无论动物模型11141516, 信号质量和有用信号记录的时间长短不一致。几项研究表明 neuroinflammation 和微电极性能之间的联系17,18,19。因此, 社区的共识是, 围绕电极的神经组织的炎症反应, 至少部分地损害了电极的可靠性。

许多研究已经检查了局部炎症 11,20,21,22或探索方法, 以减少对大脑的损害, 由插入 11,23, 24,25, 目标是提高记录性能随着时间的推移14,26。此外, 我们最近发现, 在大鼠的运动神经皮质中由微电极插入引起的医源性损伤会导致即刻和持久的精细马达缺陷27。因此, 这里提出的协议的目的是给研究人员一个定量的方法来评估可能的运动缺陷, 由于脑外伤后的植入和持续存在的 intracortical 设备 (电极在本手稿的情况下)。这里描述的行为测试旨在梳理毛和精运动功能损伤, 并可用于多种脑损伤模型。这些方法简单, 重现性好, 可以很容易地在啮齿动物模型中实现。此外, 这里提出的方法允许运动行为与组织学结果的相关性, 这一好处, 直到最近, 作者还没有看到在 BMI 领域发表。最后, 由于这些方法是为了测试精细电机功能28, 总马达功能29, 压力和焦虑行为29,30, 这里提出的方法也可以实现为各种头部损伤模型的研究人员希望排除 (或) 任何运动功能缺陷。

Protocol

所有的程序和动物护理实践都是根据路易斯. 克利夫兰退伍军人事务部医疗中心机构动物护理和使用委员会的批准和执行。 注: 为了教育研究人员关于使用刺伤模型作为控制的决定, 建议对波特等的工作进行回顾。21。 1. 微电极植入手术方法 手术前动物准备 使用异氟醚 (2-4%) 在感应腔内麻醉动物。在麻?…

Representative Results

使用此处介绍的方法, 在39、40、41、42等既定程序完成后, 在运动皮层进行微电极植入手术, 然后进行野外网格测试。评估总马达功能和梯子和握杆强度测试, 以评估优良的马达功能27。在植入动物术后16周内, 每星期完成2x 的运动功能测试, 没有手术的非植入动?…

Discussion

本文概述的协议已被用于有效和重现性测量的罚款和总马达缺陷模型的啮齿动物脑损伤。此外, 它允许在运动皮层微电极植入后, 精细运动行为与组织学结果的相关性。这些方法很容易遵循, 建立起来成本低廉, 可以修改以适应研究者的个人需求。此外, 行为测试不会给动物造成很大的压力或痛苦;相反, 研究人员认为, 这些动物生长的目的是享受测试带来的锻炼和奖赏。先前的研究表明, 运动皮层损?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究的一部分是由优异奖 #B1495 R (Capadona) 和总统早期职业奖的科学家和工程师 (美国青年, Capadona) 从美国 (美国) 退伍军人事务部的康复研究和开发服务。此外, 这项工作还部分由主管卫生事务的助理国防部长办公室通过经同侪审查的医学研究计划获得支持。W81XWH-15-1-0608。这些内容不代表美国退伍军人事务部或美国政府的意见。作者感谢博行荒川博士在 CWRU 啮齿动物行为核心中为他设计和测试啮齿动物行为协议提供指导。作者还要感谢 CWRU 机械和航空工程系的詹姆斯. 德雷克和凯文. 他在设计和制造啮齿动物阶梯试验方面的帮助。

Materials

Sprague Dawley rats, male, 201-225g Charles River CD
Compac5 anesthesia system Vetequip 901812
Electric trimmers Wahl 9918-6171
Stereotaxic frame David Kopf Instruments 1760
Gaymar heated water pad and pump Braintree Scientific Inc  TP-700
Vetbond tissue adhesive 3M 07-805-5031
Dental drill Pearson Dental O60-0045
Dura pick Fine Science Tools 10064-14
Silicon shank microelectrode Made in-house at Cleveland VA Medical Center N/A
KwikCast silicone elastomer World Precision Instruments KWIK-CAST
Teets dental cement  A-M Systems 525000
Webcam HD Pro c920 Logitec 960-000764
Grip strength meter Harvard Apparatus 565084
Minitab 17 statistical software Minitab Inc
Open field grid test Made in-house at Case Western Reserve University N/A
Ladder test Made in-house at Case Western Reserve University N/A
Rabbit anti rat IgG antibody Bio-Rad 618501

Referências

  1. Donoghue, J. P. Bridging the brain to the world: a perspective on neural interface systems. Neuron. 60 (3), 511-521 (2008).
  2. McFarland, D. J., Sarnacki, W. A., Wolpaw, J. R. Electroencephalographic (EEG) control of three-dimensional movement. Journal of Neural Engineering. 7 (3), 036007 (2010).
  3. Wolpaw, J. R., McFarland, D. J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences of the United States of America. 101 (51), 17849-17854 (2004).
  4. Bell, C. J., Shenoy, P., Chalodhorn, R., Rao, R. P. Control of a humanoid robot by a noninvasive brain-computer interface in humans. Journal of Neural Engineering. 5 (2), 214-220 (2008).
  5. Collinger, J. L., et al. High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet. 381 (9866), 557-564 (2013).
  6. Hochberg, L. R., et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 485 (7398), 372-375 (2012).
  7. Ajiboye, A. B., et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. The Lancet. 389 (10081), 1821-1830 (2017).
  8. Bowsher, K., et al. Brain-computer interface devices for patients with paralysis and amputation: a meeting report. Journal of Neural Engineering. 13 (2), 023001 (2016).
  9. Taylor, D. M., Tillery, S. I., Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science. 296 (5574), 1829-1832 (2002).
  10. Taylor, D. M., Tillery, S. I., Schwartz, A. B. Information conveyed through brain-control: cursor versus robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 11 (2), 195-199 (2003).
  11. Jorfi, M., Skousen, J. L., Weder, C., Capadona, J. R. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. Journal of Neural Engineering. 12 (1), 011001 (2015).
  12. Anderson, D. J. Penetrating multichannel stimulation and recording electrodes in auditory prosthesis research. Hearing Research. 242 (1-2), 31-41 (2008).
  13. Pourfar, M., et al. Assessing the microlesion effect of subthalamic deep brain stimulation surgery with FDG PET. Journal of Neurosurgery. 110 (6), 1278-1282 (2009).
  14. Hermann, J. K., et al. Inhibition of the cluster of differentiation 14 innate immunity pathway with IAXO-101 improves chronic microelectrode performance. Journal of Neural Engineering. , (2018).
  15. Bedell, H. W., et al. Targeting CD14 on blood derived cells improves chronic intracortical microelectrode performance in chronic modified state of neuroinflammation. Biomaterials. 163, 163-173 (2018).
  16. Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C., Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chemical Neuroscience. 6 (1), 48-67 (2015).
  17. Rennaker, R. L., Miller, J., Tang, H., Wilson, D. A. Minocycline increases quality and longevity of chronic neural recordings. Journal of Neural Engineering. 4 (2), 1-5 (2007).
  18. Saxena, T., et al. The impact of chronic blood-brain barrier breach on intracortical electrode function. Biomaterials. 34 (20), 4703-4713 (2013).
  19. Kozai, T. D., et al. Effects of caspase-1 knockout on chronic neural recording quality and longevity: insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials. 35 (36), 9620-9634 (2014).
  20. Biran, R., Martin, D., Tresco, P. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Experimental Neurology. 195 (1), 115-126 (2005).
  21. Potter, K. A., Buck, A. C., Self, W. K., Capadona, J. R. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. Journal of Neural Engineering. 9 (4), 046020 (2012).
  22. Szarowski, D. H., et al. Brain responses to micro-machined silicon devices. Brain Research. 983 (1-2), 23-35 (2003).
  23. Gunasekera, B., Saxena, T., Bellamkonda, R., Karumbaiah, L. Intracortical recording interfaces: current challenges to chronic recording function. ACS Chemical Neuroscience. 6 (1), 68-83 (2015).
  24. Villalobos, J., et al. Preclinical evaluation of a miniaturized Deep Brain Stimulation electrode lead. Conference Proceedings: Annual International Conferences of the IEEE Engineering in Medicine and Biology Society. 2015, 6908-6911 (2015).
  25. Zhong, Y., Bellamkonda, R. V. Controlled release of anti-inflammatory agent alpha-MSH from neural implants. Journal of Controlled Release. 106 (3), 309-318 (2005).
  26. Gage, G. J., et al. Surgical implantation of chronic neural electrodes for recording single unit activity and electrocorticographic signals. Journal of Visualized Experiments. (60), e3565 (2012).
  27. Goss-Varley, M., et al. Microelectrode implantation in motor cortex causes fine motor deficit: implications on potential considerations to brain computer interfacing and human augmentation. Scientific Reports. 7, 15254 (2017).
  28. Metz, G. A., Whishaw, I. Q. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. Journal of Neuroscience Methods. 115 (2), 169-179 (2002).
  29. Bailey, K. R., Crawley, J. N., Buccafusco, J. J. Anxiety-related behaviors in mice. Methods of Behavior Analysis in Neuroscience. , (2009).
  30. Prut, L., Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology. 463 (1-3), 3-33 (2003).
  31. Shoffstall, A. J., et al. Potential for thermal damage to the blood-brain barrier during craniotomy procedure: implications for intracortical recording microelectrodes. Journal of Neural Engineering. , (2017).
  32. Dona, K. R., et al. A novel single animal motor function tracking system using MATLAB’s computer vision toolbox to assess functional deficits. Journal of Visualized Experiments. , (2018).
  33. Ereifej, E. S., et al. Implantation of neural probes in the brain elicits oxidative stress. Frontiers in Bioengineering and Biotechnology. , (2018).
  34. Ereifej, E. S., et al. The neuroinflammatory response to nanopatterning parallel grooves into the surface structure of intracortical microelectrodes. Advanced Functional Materials. , (2017).
  35. Ravikumar, M., et al. The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted intracortical microelectrodes. Biomaterials. 0142-9612 (35), 8049-8064 (2014).
  36. Potter-Baker, K. A., et al. A comparison of neuroinflammation to implanted microelectrodes in rat and mouse models. Biomaterials. 34, 5637-5646 (2014).
  37. Nguyen, J. K., et al. Influence of resveratrol release on the tissue response to mechanically adaptive cortical implants. Acta Biomaterialia. 29, 81-93 (2016).
  38. Ravikumar, M., et al. The effect of residual endotoxin contamination on the neuroinflammatory response to sterilized intracortical microelectrodes. Journal of Materials Chemistry B. 2, 2517-2529 (2014).
  39. Potter, K. A., Simon, J. S., Velagapudi, B., Capadona, J. R. Reduction of autofluorescence at the microelectrode-cortical tissue interface improves antibody detection. Journal of Neuroscience Methods. 203 (1), 96-105 (2012).
  40. Potter, K. A., et al. Curcumin-releasing mechanically-adaptive intracortical implants improve the proximal neuronal density and blood-brain barrier stability. Acta Biomaterialia. 10 (5), 2209-2222 (2014).
  41. Nguyen, J. K., et al. Mechanically-compliant intracortical implants reduce the neuroinflammatory response. Journal of Neural Engineering. 11, 056014 (2014).
  42. Potter, K. A., et al. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes. Biomaterials. 34, 7001-7015 (2013).
  43. McConnell, G. C., et al. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. Journal of Neural Engineering. 6 (5), 056003 (2009).
  44. Hamm, R. J., Pike, B. R., O’Dell, D. M., Lyeth, B. G., Jenkins, L. W. The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. Journal of Neurotrauma. 11 (2), 187-196 (1994).
  45. Teuber, H. L. Recovery of function after brain injury in man. Ciba Foundation Symposium. (34), 159-190 (1975).
  46. Carmel, J. B., Kimura, H., Martin, J. H. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control. Journal of Neuroscience. 34 (2), 462-466 (2014).
  47. Hayn, L., Koch, M. Suppression of excitotoxicity and foreign body response by memantine in chronic cannula implantation into the rat brain. Brain Research Bulletin. 117, 54-68 (2015).
  48. Marklund, N. Rodent models of traumatic brain injury: methods and challenges. Methods in Molecular Biology. 1462, 29-46 (2016).
  49. Metz, G. A., Whishaw, I. Q. The ladder rung walking task: a scoring system and its practical application. Journal of Visualized Experiments. (28), e1204 (2009).
  50. Pajoohesh-Ganji, A., Byrnes, K. R., Fatemi, G., Faden, A. I. A combined scoring method to assess behavioral recovery after mouse spinal cord injury. Neuroscience Research. 67 (2), 117-125 (2010).
  51. Chesler, E. J., Wilson, S. G., Lariviere, W. R., Rodriguez-Zas, S. L., Mogil, J. S. Influences of laboratory environment on behavior. Nature Neuroscience. 5 (11), 1101-1102 (2002).
  52. Crabbe, J. C., Wahlsten, D., Dudek, B. C. Genetics of mouse behavior: interactions with laboratory environment. Science. 284 (5420), 1670-1672 (1999).
  53. Richter, S. H., Garner, J. P., Auer, C., Kunert, J., Wurbel, H. Systematic variation improves reproducibility of animal experiments. Nature Methods. 7 (3), 167-168 (2010).
  54. Xiong, Y., Mahmood, A., Chopp, M. Animal models of traumatic brain injury. Nature Reviews Neuroscience. 14 (2), 128-142 (2013).
  55. Osier, N. D., Dixon, C. E. The controlled cortical impact model: applications, considerations for researchers, and future directions. Frontiers in Neurology. 7, 134 (2016).
  56. Harrison, F. E., Hosseini, A. H., McDonald, M. P. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behavioural Brain Research. 198 (1), 247-251 (2009).
  57. Jackson, J. R., et al. Reduced voluntary running performance is associated with impaired coordination as a result of muscle satellite cell depletion in adult mice. Skeletal Muscle. 5, 41 (2015).
  58. Potter-Baker, K. A., et al. Implications of chronic daily anti-oxidant administration on the inflammatory response to intracortical microelectrodes. Journal of Neural Engineering. 12 (4), 046002 (2015).
  59. Ware, T., Simon, D., Rennaker, R. L., Voit, W. Smart polymers for neural interfaces. Polymer Reviews. 53 (1), 108-129 (2013).
  60. Ecker, M., et al. Sterilization of thiol-ene/acrylate based shape memory polymers for biomedical applications. Macromolecular Materials and Engineering. 302 (2), 160331 (2017).
  61. Kozai, T., et al. Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using in vivo two-photon mapping. Journal of Neural Engineering. 7 (4), 046011 (2010).

Play Video

Citar este artigo
Goss-Varley, M., Shoffstall, A. J., Dona, K. R., McMahon, J. A., Lindner, S. C., Ereifej, E. S., Capadona, J. R. Rodent Behavioral Testing to Assess Functional Deficits Caused by Microelectrode Implantation in the Rat Motor Cortex. J. Vis. Exp. (138), e57829, doi:10.3791/57829 (2018).

View Video