Summary

ブタモデルにおける甲状腺手術の術中神経モニタリング

Published: February 11, 2019
doi:

Summary

本研究は、ブタモデルにおける甲状腺手術の術中神経モニタリングの標準的なプロトコルの開発を目指します。ここでは、電極の種類を比較して通常と負傷者の反回神経の電気生理学的特性を調査するため、全身麻酔を実証するプロトコルを提案します。

Abstract

演説を妨害し呼吸を妨げることができます潜在的声帯麻痺反回神経 (RLN) 術中損傷可能性があります。近年、術中神経モニタリング (IONM) 非常勤 RLN のローカライズ、RLN 傷害を検出および操作中に声帯機能を予測する手法として広く適応されています。また、多くの研究は IONM 技術の新しいアプリケーションを調査し、術中 RLN の損傷を防止するための信頼性の高い戦略を開発するための動物モデルを使用しています。この記事の目的は、IONM 研究でブタのモデルを使用するための標準プロトコルを導入することです。全身麻酔、気管内挿管と RLN 傷害の電気生理学的特性を調査する実験設計を実行を誘導するための手順を説明します。このプロトコルのアプリケーションは、ブタの IONM 研究 (代替・削減・絞り込み) 3 r 原則を実装することで全体的な有効性を向上できます。

Introduction

甲状腺は、一般的に実行されるプロシージャの世界では今、術後の音声機能障害はまだ共通です。演説を妨害し呼吸を妨げることができます潜在的声帯麻痺反回神経 (RLN) 術中損傷可能性があります。さらの上喉頭神経外枝への損傷は、ピッチとボーカルの投影に影響を与える主要な音声変化を引き起こす可能性が。

術中神経モニタリング (IONM) 甲状腺の操作は、マッピングと RLN, 迷走神経 (VN) との (EBSLN) 上喉頭神経外枝の確認法の非常勤として幅広い人気を取得しています。IONM は確認と RLN 傷害と RLN の解剖学的変化を検出するためのメカニズムの解明のため便利ですが、ので、甲状腺後声帯機能を予測する使用できます。したがって、IONM の甲状腺手術で新しい機能の動的を追加し、直接可視化だけで1,2,3,4,5で入手できない情報を持つ外科医を支援,6,7,8,9,10

最近では、IONM 技術の使用を最適化し、術中 RLN 傷害11,12,13,14 を防止するための信頼性の高い戦略を確立する多くの前向き研究はブタのモデルを使用しています。 ,,1516,17,18,19,20。ブタのモデルは、本質的な教育、訓練、IONM の臨床応用と実践を提供するために使用されています。

したがって、動物モデルと IONM 技術の組み合わせは、RLN 損傷21の病態生理を研究するための貴重なツールです。本論文の目的は、ブタモデル IONM 研究での使用を実証することでした。具体的には、全身麻酔を誘発、気管挿管を行うし、RLN 傷害各種の電気生理学的特性を調査するための実験を設定する方法を説明します。

Protocol

動物実験は機関動物ケアおよび使用委員会 (IACUC) 高雄医科大学、台湾のによって承認された (プロトコルなし: 104063、105158 IACUC-102046)。 1. 動物の作製と麻酔 ブタの動物モデル注: 本研究は, IONM11,12,13,14,15,16、将?…

Representative Results

電気生理学研究EMG のベースライン データ、最小/最大刺激レベル、および刺激応答曲線プローブ標準単極刺激を使用して、0.1 から 0.3 にヴァイオリンと RLN の刺激範囲の得られた刺激の少ないレベル mA、それぞれ。一般に、現在の刺激は筋 amplituderesponse の11,17相関。筋電図の振幅 0.7 の最大刺激レベルで頭打ち?…

Discussion

RLN や EBSLN の損傷甲状腺手術による罹患率の重要なソースのまま。最近まで、神経損傷は外傷の直接可視化によってのみ識別可能性があります。IONM 今使用するさらに RLN の機能的同定刺激を適用すると、ターゲットの筋肉の収縮を記録します。現在、ただし、両方の従来断続的かつ継続的な IONM システムは偽陽性と偽陰性の解釈のいくつかの技術的な制限をあります。したがって、適切な動?…

Declarações

The authors have nothing to disclose.

Acknowledgements

本研究は、科学技術 (ほとんど 106-2314-B-037-042-MY2.)、台湾省高雄医科大学附属病院、高雄医科大学 (KMUH106-6R49) からの助成金によって支えられました。

Materials

Criticare systems nGenuity 8100E physiologic monitoring, including capnography, electrocardiography (ECG) and monitoring of oxygenation (SaO2)
Intraoperative NIM nerve monitoring systems Medtronic NIM-Response 3.0 monitor EMG activity from multiple muscles. If there is a change in nerve function, the NIM system may provide audible and visual warnings to help reduce the risk of nerve damage.
NIM TriVantage EMG Tube Medtronic 8229706 6 mm ID, 8.2 mm OD. The NIM TriVantage EMG Tube is a standard size, non-reinforced, DEHP-free PVC tube that features smooth, conductive silver ink electrodes and a cross-band to guide placement. It has reduced sensitivity to rotation and movement while offering increased EMG responses that facilitate improved nerve dissection.
NIM Contact Reinforced EMG Endotracheal Tube Medtronic 8229506 6 mm ID, 9 mm OD. The NIM Contact EMG Tube continuously monitors electromyography (EMG)
activity during surgery. An innovative design allows the tube to maintain contact,
even upon rotation. Vocal cords are more easily visible against the white band.
Recording electrode leads are twisted pair. Packaged sterile with one green and
one white subdermal needle. Single use.
NIM Standard Reinforced EMG Endotracheal Tube Medtronic 8229306 6 mm ID, 8.8 mm OD. The NIM Standard EMG Tube continuously monitors electromyography (EMG)
activity during surgery. Recording electrode leads are twisted pair. Packaged
sterile with one green and one white subdermal needle. Single use.
NIM Flex EMG Endotracheal Tube Medtronic 8229960 6 mm. The NIM Flex EMG Tube monitors vocal cord and recurrent laryngeal nerve EMG
activity during surgery. An updated, dual-channel design allows the tube to
maintain contact with the vocal cords, even upon rotation. Recording electrode
leads are twisted pair. Packaged sterile with one green and one white subdermal
needle. Single use.
Standard Prass Flush-Tip Monopolar Stimulator Probe Medtronic 8225101 Tips and Handles. For locating and mapping cranial nerves in the surgical field, the single-use
Standard Prass Monopolar Stimulating Probe features a flush 0.5 mm tip
diameter. The probe is insulated to the tip to prevent current shunting. Individually
sterile packaged.
Ball-Tip Monopolar Stimulator Probe Medtronic 8225275/ 8225276 Tip and Handle, 1.0 mm/ 2.3mm. Featuring a flexible ball tip and flexible shaft, the single-use Ball-Tip Monopolar
Stimulating Probe allows greater access to neural structures. The 1.0 mm tip
diameter allows atraumatic contact to larger neural structures. The probe is insulated
to the tip to prevent current shunting. Individually sterile packaged.
Yingling Flex Tip Monopolar Stimulator Probe Medtronic 8225251 Tips and Handles. The highly flexible single-use Yingling Monopolar Stimulating Probe allows
stimulation in areas outside the surgeon’s field of view. The platinum-iridium wire
of the probe is fully insulated to the ball tip to prevent current shunting. Individually
sterile packaged with one green subdermal electrode.
Prass Bipolar Stimulator Probe Medtronic 8225451 The single-use Prass Bipolar Stimulating Probe features a slim, flexible tip that
allows greater access to neural structures. The probe tip is 0.5 mm in distance
between cathode and anode for minimal shunting. Individually sterile packaged.
Concentric Bipolar Stimulator Probe Medtronic 8225351 The single-use Concentric Bipolar Stimulating Probe features a 360°
contact area. Insulation is complete to the active tip; cables and handles are
polarized. Individually sterile packaged.
Side-by-Side Bipolar Stimulator Probe Medtronic 8225401 The single-use Side-by-Side Bipolar Stimulating Probe features probe tips that
are 1.3 mm apart, allowing neural structures to be stimulated between the tips.
Insulation is complete to the active tip; cables and handles are polarized.
Individually sterile packaged.
APS (Automatic Periodic Stimulation) Electrode* Medtronic 8228052 / 8228053 2 mm/ 3mm. The APS Electrode offers continuous, real-time monitoring. The electrode is placed
on the nerve and can provide early warning of a change in nerve function.
Neotrode ECG Electrodes ConMed 1741C-003 The electrode is made of a clear tape material, which allows for continuous observation of the patient's skin during monitoring.
LigaSure Small Jaw Medtronic LF1212 A FDA-approved
electrothermal bipolar vessel sealing system for surgery

Referências

  1. Randolph, G. W., et al. Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: international standards guideline statement. Laryngoscope. 121, S1-S16 (2011).
  2. Barczynski, M., et al. External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: International Neural Monitoring Study Group standards guideline statement. Laryngoscope. 123, S1-S14 (2013).
  3. Chiang, F. Y., et al. The mechanism of recurrent laryngeal nerve injury during thyroid surgery–the application of intraoperative neuromonitoring. Surgery. 143 (6), 743-749 (2008).
  4. Chiang, F. Y., et al. Standardization of Intraoperative Neuromonitoring of Recurrent Laryngeal Nerve in Thyroid Operation. World Journal of Surgery. 34 (2), 223-229 (2010).
  5. Chiang, F. Y., et al. Anatomical variations of recurrent laryngeal nerve during thyroid surgery: how to identify and handle the variations with intraoperative neuromonitoring. The Kaohsiung Journal of Medical Sciences. 26 (11), 575-583 (2010).
  6. Chiang, F. Y., et al. Intraoperative neuromonitoring for early localization and identification of the recurrent laryngeal nerve during thyroid surgery. The Kaohsiung Journal of Medical Sciences. 26 (12), 633-639 (2010).
  7. Chiang, F. Y., et al. Detecting and identifying nonrecurrent laryngeal nerve with the application of intraoperative neuromonitoring during thyroid and parathyroid operation. American Journal of Otolaryngology. 33 (1), 1-5 (2012).
  8. Wu, C. W., et al. Vagal nerve stimulation without dissecting the carotid sheath during intraoperative neuromonitoring of the recurrent laryngeal nerve in thyroid surgery. Head Neck. 35 (10), 1443-1447 (2013).
  9. Wu, C. W., et al. Loss of signal in recurrent nerve neuromonitoring: causes and management. Gland Surgery. 4 (1), 19-26 (2015).
  10. Wu, C. W., et al. Recurrent laryngeal nerve injury with incomplete loss of electromyography signal during monitored thyroidectomy-evaluation and outcome. Langenbeck’s Archives of Surgery. 402 (4), 691-699 (2017).
  11. Wu, C. W., et al. Investigation of optimal intensity and safety of electrical nerve stimulation during intraoperative neuromonitoring of the recurrent laryngeal nerve: a prospective porcine model. Head Neck. 32 (10), 1295-1301 (2010).
  12. Lu, I. C., et al. A comparison between succinylcholine and rocuronium on the recovery profile of the laryngeal muscles during intraoperative neuromonitoring of the recurrent laryngeal nerve: A prospective porcine model. The Kaohsiung Journal of Medical Sciences. 29 (9), 484-487 (2013).
  13. Wu, C. W., et al. Intraoperative neuromonitoring for the early detection and prevention of RLN traction injury in thyroid surgery: A porcine model. Surgery. 155 (2), 329-339 (2014).
  14. Lin, Y. C., et al. Electrophysiologic monitoring correlates of recurrent laryngeal nerve heat thermal injury in a porcine model. Laryngoscope. 125 (8), E283-E290 (2015).
  15. Wu, C. W., et al. Recurrent laryngeal nerve safety parameters of the Harmonic Focus during thyroid surgery: Porcine model using continuous monitoring. Laryngoscope. 125 (12), 2838-2845 (2015).
  16. Dionigi, G., et al. Severity of Recurrent Laryngeal Nerve Injuries in Thyroid Surgery. World Journal of Surgery. 40 (6), 1373-1381 (2016).
  17. Wu, C. W., et al. Optimal stimulation during monitored thyroid surgery: EMG response characteristics in a porcine model. Laryngoscope. 127 (4), 998-1005 (2017).
  18. Dionigi, G., et al. Safety of LigaSure in recurrent laryngeal nerve dissection-porcine model using continuous monitoring. Laryngoscope. 127 (7), 1724-1729 (2017).
  19. Lu, I. C., et al. Safety of high-current stimulation for intermittent intraoperative neural monitoring in thyroid surgery: A porcine model. Laryngoscope. , (2018).
  20. Lu, I. C., et al. Reversal of rocuronium-induced neuromuscular blockade by sugammadex allows for optimization of neural monitoring of the recurrent laryngeal nerve. Laryngoscope. 126 (4), 1014-1019 (2016).
  21. Wu, C. -. W., et al. Intraoperative neural monitoring in thyroid surgery: lessons learned from animal studies. Gland Surgeryery. 5 (5), 473-480 (2016).
  22. Lu, I. C., et al. Reversal of rocuronium-induced neuromuscular blockade by sugammadex allows for optimization of neural monitoring of the recurrent laryngeal nerve. Laryngoscope. , (2016).
  23. Scott, A. R., Chong, P. S., Brigger, M. T., Randolph, G. W., Hartnick, C. J. Serial electromyography of the thyroarytenoid muscles using the NIM-response system in a canine model of vocal fold paralysis. Annals of Otology, Rhinology, and Laryngology. 118 (1), 56-66 (2009).
  24. Puram, S. V., et al. Vocal cord paralysis predicted by neural monitoring electrophysiologic changes with recurrent laryngeal nerve compressive neuropraxic injury in a canine model. Head Neck. 38, E1341-E1350 (2016).
  25. Puram, S. V., et al. Posterior cricoarytenoid muscle electrophysiologic changes are predictive of vocal cord paralysis with recurrent laryngeal nerve compressive injury in a canine model. Laryngoscope. 126 (12), 2744-2751 (2016).
  26. Brauckhoff, K., et al. Injury mechanisms and electromyographic changes after injury of the recurrent laryngeal nerve: Experiments in a porcine model. Head Neck. 40 (2), 274-282 (2018).
  27. Brauckhoff, K., Aas, T., Biermann, M., Husby, P. EMG changes during continuous intraoperative neuromonitoring with sustained recurrent laryngeal nerve traction in a porcine model. Langenbeck’s Archives of Surgery. 402 (4), 675-681 (2017).
  28. Schneider, R., et al. A new vagal anchor electrode for real-time monitoring of the recurrent laryngeal nerve. The American Journal of Surgery. 199 (4), 507-514 (2010).
  29. Kim, H. Y., et al. Impact of positional changes in neural monitoring endotracheal tube on amplitude and latency of electromyographic response in monitored thyroid surgery: Results from the Porcine Experiment. Head Neck. 38, E1004-E1008 (2016).
  30. Sterpetti, A. V., De Toma, G., De Cesare, A. Recurrent laryngeal nerve: its history. World Journal of Surgery. 38 (12), 3138-3141 (2014).
  31. Kaplan, E. L., Salti, G. I., Roncella, M., Fulton, N., Kadowaki, M. History of the recurrent laryngeal nerve: from Galen to Lahey. World Journal of Surgery. 33 (3), 386-393 (2009).
  32. Lu, I. C., et al. In response to Reversal of rocuronium-induced neuromuscular blockade by sugammadex allows for optimization of neural monitoring of the recurrent laryngeal nerve. Laryngoscope. 127 (1), e51-e52 (2017).
check_url/pt/57919?article_type=t

Play Video

Citar este artigo
Wu, C., Huang, T., Chen, H., Chen, H., Tsai, T., Chang, P., Lin, Y., Tseng, H., Hun, P., Liu, X., Sun, H., Randolph, G. W., Dionigi, G., Chiang, F., Lu, I. Intra-Operative Neural Monitoring of Thyroid Surgery in a Porcine Model. J. Vis. Exp. (144), e57919, doi:10.3791/57919 (2019).

View Video