Summary

小鼠大脑皮层细胞组织的大尺度三维成像

Published: September 05, 2018
doi:

Summary

在这里, 我们描述一个程序, 组织清除, 荧光标记, 和大规模的小鼠脑组织成像, 从而使可视化的三维组织的细胞类型在大脑皮层。

Abstract

哺乳动物大脑皮层由许多类型的兴奋和抑制神经元组成, 每一种都有特定的电生理和生化特性, 突触连接和体内功能, 但其基本功能和解剖学组织从细胞到网络规模是不太了解。在这里, 我们描述了一个方法, 三维图像的荧光标记神经元跨大区域的大脑, 以调查皮质细胞组织。在转基因小鼠中, 用荧光逆行神经元示踪剂或荧光蛋白的表达来标记特定类型的神经元。块脑标本,例如,半球, 是在固定后准备的, 用组织清除方法透明, 并受到特定细胞类型的荧光 immunolabeling。大面积扫描使用共焦或双光子显微镜, 配备了较大的工作距离目标和机动阶段。该方法可以解决小鼠大脑皮层细胞型特定柱功能模块的周期性组织问题。该方法可用于研究不同脑区和其他复杂组织中的三维细胞结构。

Introduction

哺乳动物大脑皮层由大量的细胞类型组成, 每一个有特定的基因表达模式, 电生理和生化特性, 突触连接, 和在体内功能1,2 ,3,4,5,6,7。这些细胞类型是否被组织成重复的结构是不清楚的。皮质柱, 包括视觉定向柱和体感桶, 有重复的结构, 但其细胞组织仍然不清楚8,9。这些是存在于特定的皮质区域, 不是大脑范围的系统。

在皮层5层, 大部分神经元被分为四大类。一种主要类型的兴奋神经元, 亚脑投射神经元, 项目轴突到皮层下靶, 包括桥脑, 脊髓, 和优越的丘, 因此, 代表了主要的皮质输出通路10。皮质投射神经元, 另一种主要类型的兴奋神经元, 支配皮层10。抑制神经元也包含两大类: parvalbumin 表达和生长抑素表达细胞11

最近的分析表明, 四细胞类型被组织成重复结构12,13,14。次级脑投射神经元121314和皮层投射神经元14组织成细胞型特异性 microcolumns, 有一直径的细胞。Parvalbumin 表达和生长抑素表达细胞与 microcolumns 的亚脑投射神经元, 而不是与 microcolumns 皮层投射神经元14。Microcolumns 自己周期性地排列形成一个六角格子阵列14并且在多皮层区域包括视觉, 感觉和马达区域在老鼠脑子12,14并且在语言人脑的区域13。神经元在个体柱陈列同步活动并且有相似的感觉反应14。这些观察表明, 5 层细胞类型组织成一个柱晶格结构, 代表第一个已知的大脑范围内重复功能模块的组织。

Microcolumns 有大约10µm 的半径并且有大约40µm 的空间周期性。此外, microcolumns 的方向与它们的顶端树突平行, 并根据它们在皮层14中的位置而变化。因此, 柱系统很难分析使用传统的皮质切片的典型厚度的几微米。此外, 周期性分析需要来自广泛脑区的三维数据, 因此, 共焦显微镜和活体2 光子成像的典型成像区域太窄。

最近, 技术已经发展到清除厚组织15,16。在这里, 我们描述了这些方法的应用, 以获得大型, 三维图像的主要细胞类型在小鼠皮层层5组成的柱系统。Subcerebral 投射神经元用逆行标记或增强绿色荧光蛋白在Crym-egfp转基因小鼠12中的表达进行标记, 皮质投射神经元用逆行标记标记或由 tdTomato 表达在Tlx3/Ai9小鼠17。Parvalbumin 表达和生长抑素表达细胞用免疫组化标记。(抗体标度 S) AbScale 方法18用于抗体染色实验, 而 (见深脑) SeeDB 方法19用于其他实验。这些方法克服了传统成像方法的难点, 揭示了5层14的精确细胞组织。

Protocol

所有实验程序均经山本理瓦科动物实验委员会和山本理基因重组实验安全委员会批准, 并根据山本理脑科学动物设施的机构指南进行。研究所。 1. 成像室的制备 成像室19 使用硅橡胶板, 准备一个房间的厚度约5毫米和地板板的各种厚度。此外, 准备有和没有玻璃底部的培养皿 (图 1A)。 ?…

Representative Results

我们标记皮层投射神经元的 tdTomato 在Tlx3/Ai9 转基因小鼠和可视化的亚脑投射神经元, 通过注射逆行示踪 CTB488 进入脑桥。大脑的左半球受 SeeDB 方法扫描, 使用双光子显微镜, 配备了水浸泡长工作距离目标 (25X, 1.1, 工作距离2毫米) 和机动阶段。一叠401张图像 (512 x 512 像素; 像素大小 = 0.99 µm) 在 z 步 = 2.8 µm 在每30个扫描位置被获得了。两种细胞的细胞体在广泛的?…

Discussion

我们已经提出的程序, 以获得大规模的三维图像的细胞类型特定组织的主要细胞类型的小鼠皮层层5。与传统的切片染色相比, 该方法在确定大脑皮层的三维组织方面更为有用。该方法使图像获得从更广泛和更深层次的大脑区域相比, 典型的活体2 光子显微镜或常规共焦显微术, 从而可以让皮层细胞的综合分析组织。

该方法的一个关键步骤是抗体穿透。抗体的子集显示, 渗?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢淳宫胁和哈马为他们的建议在 AbScale 实验, 查尔斯横山为编辑手稿, eriko 公司 Ohshima 和美雪 Kishino 为他们的技术协助。这项工作得到了从山本理到金斗勋的研究资金和日本教育、文化、体育、科学和技术部 (下个) 为金斗勋 (“介观 Neurocircuitry” 的创新领域) 的科学研究资助; 22115004) 和(25890023)。

Materials

Crym-egfp transgenic mice MMRRC 012003-UCD
Tlx3-cre transgenic mice MMRRC 36547-UCD
ROSA-CAG-flox-tdTomato mice Jackson Laboratory JAX #7909
Silicone rubber sheet AS ONE 6-611-01 0.5 mm thickness
Silicone rubber sheet AS ONE 6-611-02 1.0 mm thickness
Silicone rubber sheet AS ONE 6-611-05 3.0 mm thickness
Petri dishes Falcon 351008
Cover glass Matsunami C022241
Cholera toxin subunit B (recombinant), Alexa Fluor 488 conjugate Invitrogen C22841
Cholera toxin subunit B (recombinant), Alexa Fluor 555 conjugate Invitrogen C22843
Cholera toxin subunit B (recombinant), Alexa Fluor 594 conjugate Invitrogen C22842
Cholera toxin subunit B (recombinant), Alexa Fluor 647 conjugate Invitrogen C34778
26G Hamilton syringe Hamilton 701N
Injector pump KD Scientific KDS 310 Pons injection
Injector pump KD Scientific KDS 100 Superior colliculus injection
Manipulator Narishige SM-15
Sodium pentobarbital Kyoritsu Seiyaku Somnopentyl
Isoflurane Pfizer
Lidocaine AstraZeneca Xylocaine injection 1% with epinephrine
Drill Toyo Associates HP-200
Avitene microfibrillar hemostat Davol Inc 1010090
Alonalfa Daiichi-Sankyo Alonalpha A
Surgical silk Ethicon K881H
Incubator UVP HB-1000 Hybridizer
Glass pipette Drummond Scientific Company 2-000-075
Electrode puller Sutter Instrument Company P-97
Paraffin Liquid, light Nacalai tesque 26132-35
Saline Otsuka 1326
Paraformaldehyde Nacalai tesque 26126-54
Tungsten needle Inter medical Φ0.1 *L200 mm
Vibratome Leica VT1000S
50 mL plastic tube Falcon 352070
α-thioglycerol Nacalai tesque 33709-62
D(-) Fructose Nacalai tesque 16315-55
BluTack Bostik CKBT-450000
Two-photon microscope Nikon A1RMP
Water-immersion long working distance objectives Nikon CFI Apo LWD 25XW, NA 1.1, WD 2 mm
Water-immersion long working distance objectives Nikon CFI LWD 16XW, NA 0.8, WD 3 mm
Motorized stage COMS PT100C-50XY
Filter Semrock FF01-492/SP-25
Filter Semrock FF03-525/50-25
Filter Semrock FF03-575/25-25
Filter Semrock FF01-629/56
Filter Chroma D605/55m
5 mL plastic tube AS ONE VIO-5B
2 mL plastic tube Eppendorf  0030120094
Urea Nacalai tesque 35905-35
Triton X-100 Nacalai tesque 35501-15
Glyserol Sigma-aldrich 191612
D(-)-sorbitol Wako 191-14735
Methyl-β-cyclodextrin Tokyo chemical industry M1356
γ-Cyclodextrin Wako 037-10643
N-acetyl-L-hydroxyproline Skin Essential Actives 33996-33-7
DMSO Nacalai tesque 13445-45
Bovine Serum Albumin Sigma-aldrich A7906
Tween-20 (1.1 g/mL) Nacalai tesque 35624-15
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 555 Invitrogen A21422
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 555 Invitrogen A21428
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 Invitrogen A21235
Goat anti-Mouse IgG (H+L) Highly CrossAdsorbed Secondary Antibody, Alexa Fluor 488 Invitrogen A11029
Donkey anti-Rabbit IgG (H+L) Highly CrossAdsorbed Secondary Antibody, Alexa Fluor 488 Invitrogen A21206
Confocal microscope Olympus FV1000
Water-immersion long working distance objectives Olympus XLUMPLFLN 20XW, NA 1.0, WD 2 mm
Anti-NeuN Millipore MAB377
Anti-NeuN Millipore ABN78
Anti-CTIP2 Abcam ab18465
Anti-Statb2 Abcam ab51502
Anti-GAD67 Millipore MAB5406
Anti-GABA Sigma A2052
Anti-Parvalbumin Swant 235
Anti-Parvalbumin Frontier Institute PV-Go-Af460
Anti-Parvalbumin Sigma P3088
Anti-Parvalbumin Abcam ab11427
Anti-Somatostatin Peninsula Laboratories T-4103
Anti-c-Fos CalbioChem PC38

Referências

  1. Lein, E. S., et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 445 (7124), 168-176 (2007).
  2. Defelipe, J., et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience. 14 (3), 202-216 (2013).
  3. Jiang, X., et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science. 350 (6264), aac9462 (2015).
  4. Sorensen, S. A., et al. Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. Cerebral Cortex. 25 (2), 433-449 (2015).
  5. Zeisel, A., et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 347, 1138-1142 (2015).
  6. Tasic, B., et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience. 19 (2), 335-346 (2016).
  7. Zeng, H., Sanes, J. R. Neuronal cell-type classification: Challenges, opportunities and the path forward. Nature Reviews Neuroscience. 18 (9), 530-546 (2017).
  8. Horton, J. C., Adams, D. L. The cortical column: a structure without a function. Philosophical Transactions of the Royal Society B: Biological Sciences. 360 (1456), 837-862 (2005).
  9. Costa, N. M., Martin, K. A. C. Whose cortical column would that be?. Frontiers in Neuroanatomy. 4, (2010).
  10. Molyneaux, B. J., Arlotta, P., Menezes, J. R. L., Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nature Reviews Neuroscience. 8 (6), 427-437 (2007).
  11. Hioki, H., et al. Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron. Journal of Neuroscience. 33 (2), 544-555 (2013).
  12. Maruoka, H., Kubota, K., Kurokawa, R., Tsuruno, S., Hosoya, T. Periodic organization of a major subtype of pyramidal neurons in neocortical layer V. Journal of Neuroscience. 31 (50), 18522-18542 (2011).
  13. Kwan, K. Y., et al. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell. 149 (4), 899-911 (2012).
  14. Maruoka, H., Nakagawa, N., Tsuruno, S., Sakai, S., Yoneda, T., Hosoya, T. Lattice system of functionally distinct cell types in the neocortex. Science. 358 (6363), 610-615 (2017).
  15. Treweek, J. B., Gradinaru, V. Extracting structural and functional features of widely distributed biological circuits with single cell resolution via tissue clearing and delivery vectors. Current Opinion in Biotechnology. 40, 193-207 (2016).
  16. Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T., Ueda, H. R. Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annual Review of Cell and Developmental Biology. 32 (1), (2016).
  17. Gerfen, C. R., Paletzki, R., Heintz, N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron. 80 (6), 1368-1383 (2013).
  18. Hama, H., et al. ScaleS: an optical clearing palette for biological imaging. Nature Neuroscience. 18 (10), 1518-1529 (2015).
  19. Ke, M. T., Fujimoto, S., Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nature Neuroscience. 16 (8), 1154-1161 (2013).
  20. Gage, G. J., Kipke, D. R., Shain, W. Whole Animal Perfusion Fixation for Rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  21. Kim, S. -. Y., et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proceedings of the National Academy of Sciences. 112 (46), E6274-E6283 (2015).
  22. Murray, E., et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell. 163 (6), 1500-1514 (2015).
  23. Ke, M. T., et al. Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Reports. 14 (11), 2718-2732 (2016).
  24. Lee, E., et al. ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Scientific Reports. 6, 18631 (2016).
  25. Renier, N., et al. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes. Cell. 165 (7), 1789-1802 (2016).
  26. Kubota, S. I., et al. Whole-body profiling of cancer metastasis with single-cell resolution. Cell Reports. 20 (1), 236-250 (2017).
  27. Li, W., Germain, R. N., Gerner, M. Y. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proceedings of the National Academy of Sciences. 114 (35), E7321-E7330 (2017).
  28. Liu, A. K. L., Lai, H. M., Chang, R. C. C., Gentleman, S. M. Free of acrylamide sodium dodecyl sulphate (SDS)-based tissue clearing (FASTClear): a novel protocol of tissue clearing for three-dimensional visualization of human brain tissues. Neuropathology and Applied Neurobiology. 43 (4), 346-351 (2017).
check_url/pt/58027?article_type=t

Play Video

Citar este artigo
Yoneda, T., Sakai, S., Maruoka, H., Hosoya, T. Large-scale Three-dimensional Imaging of Cellular Organization in the Mouse Neocortex. J. Vis. Exp. (139), e58027, doi:10.3791/58027 (2018).

View Video