Summary

3D Cocultures 星形胶质细胞与人多潜能干细胞神经元的突触电路建模

Published: August 16, 2018
doi:

Summary

在本协议中, 我们的目的是描述一种可重现的方法, 将分离的人类多能干细胞衍生神经元和星形胶质细胞组合成3D 球体 cocultures, 在自由漂浮条件下维持这些球体, 随后用 immunoanalysis 和多电极阵列记录测量球体的突触电路活动。

Abstract

我们理解各种细胞类型和信号对突触电路功能的作用的障碍是缺乏研究人脑的相关模型。解决这个问题的一项新兴技术是使用三维 (3D) 神经细胞培养, 称为 ‘ organoids ‘ 或 ‘ 球体 ‘, 长期保存细胞间相互作用, 包括细胞外黏附分子。然而, 这些文化系统是费时的, 没有系统地产生。在这里, 我们详细的方法, 以迅速和一贯地产生 3D cocultures 神经元和星形胶质细胞从人类多潜能干细胞。首先, 对预分化的星形胶质细胞和神经元祖先进行离解和计数。接下来, 细胞被结合在球形形成的菜肴与一个蛋白激酶抑制剂, 并在特定的比率, 以产生可再生的大小球体。经过几个星期的文化作为漂浮球体, cocultures (‘ 小行星 ‘) 最终被切片的染色或电镀后, 多电极阵列, 以测量突触密度和强度。一般情况下, 该协议将产生3D 神经球体, 显示成熟的细胞类型限制标记, 形成功能性突触, 并表现自发突触网络突发活动。与单层培养相比, 该系统允许对疾病机制进行药物筛选和调查。

Introduction

星形胶质细胞是中枢神经系统 (CNS) 内一种高度丰富的神经细胞类型, 其功能职责超出结构支持范围。通过可溶性 synaptogenic 因子和细胞外基质 (ECM) 组分的分泌, 星形胶质细胞在发育过程中帮助成熟突触的建立和聚集1。通过胞外信号2345, 它们在保持突触的健康和可塑性方面发挥着关键作用, 并有助于维持稳定的长期稳定性。环境通过调节胞外钾和谷氨酸, 以及能量基质的分泌和 ATP6,7,8。最后, 它们可以通过影响 extrasynaptic 电流9来促进神经传递, 并且可以通过其他细胞类型 (如促进髓鞘形成10) 间接地影响活动。重要的是, 由于星形胶质细胞的异常或功能障碍会导致许多神经发育综合征和成人神经病理学, 显然需要将星形胶质细胞与神经网络中的神经元包括在一起, 以改善内源性脑环境模型。星形胶质细胞的一个整体特征是它们能够形成与神经元突触1,11,12的动态相互作用。在没有胶质细胞的情况下, 神经元形成数量有限的突触, 一般也缺乏功能成熟度13

人星形胶质细胞显示形态学, 转录和功能特征-如增加的大小和复杂性的分支, 以及物种特异基因-不概括在啮齿目动物12,14, 15。因此, 利用人类多潜能干细胞 (hPSC) 衍生的神经细胞的研究已被广泛接受为一种检测中枢神经系统相关疾病的方法, 同时开发新的疗法, 伤害模型和文化范例16 ,17。此外, hPSCs 允许研究人类突触的形成和功能, 而不需要初级组织18,19

我们理解各种细胞类型和信号对突触电路功能的贡献的障碍是缺乏相关的人脑模型。需要一个适当的平台来重述其突触网络的高保真度和重现性。最近, 3D 文化系统 (广为人知的 “organoids”、”球体” 或 “迷你大脑”) 的生产中出现了兴趣,在细胞和宏观层面上对复杂的三维 (3D) 结构建模。3D. 在典型的2D 共培养范式2122中, 文化系统保留 ECM 和细胞间的相互作用, 通常不存在或受到限制。为培养3D 神经球体232425, 存在大量的技术;然而, 许多人需要长时间的文化周期 (几个月到几年) 来进行自发的开发和层的保存, 用户对输出的控制很少。

在这里, 我们说明了一个系统的方法, 迅速和一贯生物工程的神经相互作用之间的多种细胞类型 (预分化神经元和星形胶质细胞) 从 hPSCs 的组装细胞成球形 cocultures (‘ 小行星 ‘)26在3D 中概括了人类特有的形态学复杂性。这种高密度的神经系统产生均匀分散的神经亚型, 随着时间的推移而逐渐成熟, 可以用高通量的方式进行筛选或测定。我们首次证明, 人类星形胶质细胞诱发突触网络爆裂活动在这些 3D cocultures。此外, 该协议很容易适应产生不同大小的球体, 利用指定给中枢神经系统不同区域特性的细胞, 并根据需要研究多种其他细胞类型的相互作用。

Protocol

1. 细胞培养和试剂制备 注: 本节中的协议按照它们在差异化协议中的显示顺序编写 (第2节)。请参阅材料和目录编号的材料表。 为细胞培养制备涂层板材。 稀释细胞外基质 (ECM) 涂层溶液与 DMEM/F12 介质, 以准备1毫克/毫升的库存解决方案。整除稀释的 ECM 库存溶液成30个3毫升的锥形管, 并立即存储在-20 °c。对于一个工作的解决方案, 并用?…

Representative Results

当正确执行时, 此协议将产生由 hPSCs (图 1A-1C) 生成的星形胶质细胞28、33、34和神经元35的功能 cocultures 的定义种群, 如详细的前26和这里描述的步骤2.1–2.2。这个逐步的过程, 使用 microwell 板, 预计产生3D 的神经球体的大小和形状一致 …

Discussion

在本协议中, 我们描述了一个系统的方法来生产3D 球体的神经 cocultures。球体由星形胶质细胞和神经元组成, 独立于 hPSCs。虽然不是本协议的重点, 但从 hPSCs28中生成的纯星形胶质细胞是一个关键步骤, 如果没有事先的经验, 它在技术上可能具有挑战性。这些突触集成电路的第一步应该是细致的定时和注意细节。hPSC 星形胶质细胞的使用限制是长的分化过程;然而, 生产大量的细胞, 可?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们要感谢埃里克 Ullian 博士 (UCSF) 在设计这些程序方面的知识投入, 迈克尔. 沃德博士 (NIH) 就 iNeuron 分化和 Barlas 进行初步图像分析提供技术咨询。

Materials

6 well plate Fisher Scientific 08-772-1B
15 ml conical tubes Olympus Plastics 28-101
Accutase Sigma A6964-100ML Detachment solution
AggreWell plate Stemcell Technologies 34850
Anti-Adherence Rinsing Solution Stemcell Technologies 7010 Prevent cell adhesion to microwell plates
Anti/anti Thermofisher 15240062
B27 Thermofisher 17504044 Media Supplement
BrainPhys neuronal medium Stemcell Technologies 5790 Neurophysiological basal medium alternative
Circular glass coverslips Neuvitro GG-12-oz
Cryostor CS10 Stemcell Technologies 7930 Cryopreservation medium with 10% DMSO
DMEM/F12 Thermofisher 10565-042 With GlutaMAX supplement
DMH-1 Stemcell Technologies 73634 HAZARD: Toxic if swallowed. Working concentration: 2 uM
Donkey serum Lampire Biological Laboratories 7332100 Working concentration: 5% in primary blocking buffer, 1% in secondary blocking buffer
Doxycycline Hydrochloride (Dox) Sigma D3072-1ml HAZARD: Toxic for pregnant women. Working concentration: 2 ug/mL
Epidermal growth factor (EGF) Peprotech AF-100-15 Working concentration: 10 ng/mL
Fibroblast growth factor-2 (FGF) Peprotech 100-18B Working concentration: 10 ng/mL
Fluoromount-G mounting solution Southern Biotech 0100-01
Glass slides Fisherbrand 22-037-246
Goat serum Lampire Biological Laboratories 7332500 Working concentration: 5% in primary blocking buffer, 1% in secondary blocking buffer
Hemacytometer or automatic cell counter Life Technologies AMQAX1000
Heparin Sigma H3149-50KU Working concentration: 2 mg/mL
Magnetic plate DLAB 8030170200
Matrigel membrane matrix Corning 354230 ECM coating solution. Working concentration: 80 ug/ml. Prepare on ice and ensure that pipettes, tubes, and media are pre-chilled.
MEA 2100 System Multichannel Systems MEA2100
Mounting solution
N2 Thermofisher 17502048 Media Supplement
OCT Tissue-Tek 4583 Tissue embedding solution for cryosectioning
Pap Pen (Aqua Hold) Scientific Device Laboratory 9804-02
Paraformaldehyde (PFA) Acros Organics 169650025 HAZARD: Toxic if inhaled. Working concentration: 4% in PBS
Phosphate buffered saline (PBS) Stemcell Technologies CA008-300
Poly-l-ornithine (PLO) Sigma P3655-100MG Working concentration: 0.5 mg/mL
Rectangular glass cover slips Fisherfinest Premium Superslip 12-545-88
ReLeSR Stemcell Technologies 5872 Detachment and passaging reagent
Rho-Kinase Inhibitor Y27632- (Y) Tocris 1254 Working concentration: 10 uM
SB431542 Stemcell Technologies 72234 Working concentration: 2 uM
Spinner flasks Fisher Scientific 4500-125
Sucrose Fisher Chemical S5-3 Working concentration: 20% or 30% in PBS
T25 Culture Flask Olympus Plastics 25-207 Vented caps
T75 Culture Flask Olympus Plastics 25-209 Vented caps
Terg-A-zyme Sigma Z273287-1EA Detergent. Working concentration: 1%
TeSR-E8 basal medium Stemcell Technologies 5940 Human pluripotent stem cell (hPSC) medium
TeSR-E8 supplements Stemcell Technologies 5940 Supplements for human pluripotent stem cell medium
TritonX-100 Sigma X100-500ML Detergent for cell permeabilization. Working concentration: 0.25% in blocking buffer
Trypan blue Invitrogen T10282
Antibodies
AlexaFluor 488 Thermofisher A-11029 Secondary antibody
AlexaFluor 594 Thermofisher A-11037 Secondary antibody
Ezrin Thermofisher MA5-13862 Primary antibody; astrocytes perisynaptic
GFAP Chemicon MAB360 Primary antibody; astrocytes
GFP Aves GFP-1020 Primary antibody; astrocytes
Glt1 Gift from Dr. Jeffrey Rothstein n/a Primary antibody; astrocytes
Homer Synaptic Systems 160 011 Primary antibody; neurons, post-synaptic
MAP2 Synaptic Systems 188 004 Primary antibody; neurons
PSD95 Abcam ab2723 Primary antibody; neurons, post-synaptic
S100 Abcam ab868 Primary antibody; astrocytes
Synapsin 1 Synaptic Systems 106 103 Primary antibody; neurons, pre-synaptic
TuJ1/β3-tubulin (TUBB3) Covance MMS-435P Primary antibody; neurons

Referências

  1. Ullian, E. M., Christopherson, K. S., Barres, B. A. Role for Glia in Synaptogenesis. Glia. 47, 209-216 (2004).
  2. Baldwin, K. T., Eroglu, C. Molecular mechanisms of astrocyte-induced synaptogenesis. Current Opinion in Neurobiology. 45, 113-120 (2017).
  3. Molofsky, A. V., et al. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature. 509 (7499), 189-194 (2014).
  4. Sultan, S., et al. Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes. Neuron. 88, 957-972 (2015).
  5. Clarke, L. E., Barres, B. A. Emerging roles of astrocytes in neural circuit development. Nat Rev Neuroscience. 14 (5), 311-321 (2013).
  6. Cheung, G., Sibille, J., Zapata, J., Rouach, N. Activity-Dependent Plasticity of Astroglial Potassium and Glutamate Clearance. Neural Plasticity. , 109106 (2015).
  7. Ghezali, G., Dallerac, G., Rouach, N. Perisynaptic astroglial processes dynamic processors of neuronal information. Brain Struct Funct. 221, 2427-2442 (2016).
  8. Kimelberg, H. K., Nedergaard, M. Functions of Astrocytes and their Potential As Therapeutic Targets. Neurotherapeutics. 7, 338-353 (2010).
  9. Pál, B. Astrocytic Actions on Extrasynaptic Neuronal Currents. Frontiers in Cellular Neuroscience. 9, 474 (2015).
  10. Kiray, H., Lindsay, S. L., Hosseinzadeh, S., Barnett, S. C. The multifaceted role of astrocytes in regulating myelination. Experimental Neurology. 283, 541-549 (2016).
  11. Allen, N. J., Eroglu, C. Cell Biology of Astrocyte-Synapse Interactions. Neuron. 96 (3), 697-708 (2017).
  12. Krencik, R., van Asperen, J. V., Ullian, E. M. Human astrocytes are distinct contributors to the complexity of synaptic function. Brain Research Bulletin. 129, 66-73 (2017).
  13. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., Barres, B. A. Control of Synapse Number by Glia. Science. 291, 657-662 (2001).
  14. Oberheim Bush, N. A., Nedergaard, M. Do Evolutionary Changes in Astrocytes Contribute to the Computational Power of the Hominid Brain?. Neurochemical Research. 42 (9), 2577-2587 (2017).
  15. Han, X., et al. Forebrain Engraftment by Human Glial Progenitor Cells Enhances Synaptic Plasticity and Learning in Adult Mice. Cell Stem Cell. 12 (3), 342-353 (2013).
  16. Inoue, H., Nagata, N., Kurokawa, H., Yamanaka, S. iPS cells: a game changer for future medicine. The EMBO Journal. 33 (5), 409-417 (2014).
  17. Shi, Y., Inoue, H., Wu, J. C., Yamanaka, S. Induced pluripotent stem cell technology a decade of progress. Nature Reviews Drug Discovery. 16 (2), 115-130 (2017).
  18. Dodla, M. C., Mumaw, J., Stice, S. L. Role of astrocytes, soluble factors, cells adhesion molecules and neurotrophins in functional synapse formation: implications for human embryonic stem cell derived neurons. Stem Cell Res Ther. , 251-260 (2010).
  19. Krencik, R., Ullian, E. M. A cellular star atlas: using astrocytes from human pluripotent stem cells for disease studies. Frontiers in Cellular Neuroscience. 7, 1-10 (2013).
  20. Pasca, S. P. The rise of three-dimensional human brain cultures. Nature. 553 (7689), 437-445 (2018).
  21. Huch, M., Knoblich, J. A., Lutolf, M. P., Martinez-arias, A. The hope and the hype of organoid research. Development. 144, 938-941 (2017).
  22. Mason, J. O., Price, D. J. Building Brains in a Dish: Prospects for Growing Cerebral Organoids from Stem Cells. Neurociência. 334, 105-118 (2016).
  23. Kelava, I., Lancaster, M. A. Dishing out mini-brains: Current progress and future prospects in brain organoid research. Biologia do Desenvolvimento. 420 (2), 199-209 (2016).
  24. Kelava, I., Lancaster, M. A. Stem Cell Models of Human Brain Development. Cell Stem Cell. 18 (6), 736-748 (2016).
  25. Sloan, S. A., et al. Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells. Neuron. , 779-790 (2017).
  26. Krencik, R., et al. Systematic three-dimensional coculture rapidly recapitulates interactions between human neurons and astrocytes. Stem Cell Reports. 9 (6), 1745-1753 (2017).
  27. Chen, G., et al. Chemically defined conditions for human iPSC derivation and culture. Nature Methods. 8 (5), 424-429 (2011).
  28. Krencik, R., Zhang, S. -. C. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nature Protocols. 6 (11), 1710-1717 (2011).
  29. Du, Z. -. W., et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nature Communications. 6, 6626 (2015).
  30. Neely, M. D., et al. DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: Comparison of PAX6 and SOX1 expression during neural induction. ACS Chemical Neuroscience. 3 (6), 482-491 (2012).
  31. Lippmann, E. S., Estevez-Silva, M. C., Ashton, R. S. Defined Human Pluripotent Stem Cell Culture Enables Highly Efficient Neuroepithelium Derivation Without Small Molecule Inhibitors. Stem Cells. 32, 1032-1042 (2014).
  32. Eggan, K., Kawada, J., Kaneda, S., Kirihara, T., Maroof, A. Generation of a Motor Nerve Organoid with Human Stem Cell-Derived Neurons. Stem Cell Reports. 9, 1441-1449 (2017).
  33. Krencik, R., Weick, J. P., Liu, Y., Zhang, Z. -. J., Zhang, S. -. C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nature Biotechnology. 29 (6), 528-534 (2011).
  34. Krencik, R., et al. Dysregulation of astrocyte extracellular signaling in Costello syndrome. Science Translational Medicine. 7 (286), 286 (2015).
  35. Wang, C., et al. Scalable Production of iPSC-Derived Human Neurons to Identify Tau- Lowering Compounds by High-Content Screening. Stem Cell Reports. 9 (4), 1221-1233 (2017).
  36. Amin, H., Maccione, A., Marinaro, F., Zordan, S., Nieus, T., Berdondini, L. Electrical Responses and Spontaneous Activity of Human iPS-Derived Neuronal Networks Characterized for 3-month Culture with 4096-Electrode Arrays. Frontiers in Neuroscience. 10, (2016).
  37. Kapucu, F. E., Mäkinen, M. E., Tanskanen, J. M. A., Ylä-Outinen, L., Narkilahti, S., Hyttinen, J. A. K. Joint analysis of extracellular spike waveforms and neuronal network bursts. Journal of Neuroscience Methods. 259, 143-155 (2016).
  38. Ippolito, D. M., Eroglu, C. Quantifying Synapses: an Immunocytochemistry-based Assay to Quantify Synapse Number. Journal of Visualized Experiments. 45, 2-9 (2010).
  39. Zhang, Y., et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 78 (5), 785-798 (2013).
  40. Odawara, A., Katoh, H., Matsuda, N., Suzuki, I. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Scientific reports. 6, 26181 (2016).
  41. Bardy, C., Hurk, , et al. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. PNAS. 112 (25), E2725-E2734 (2015).
  42. Monzel, A. S., et al. Derivation of Human Midbrain-Specific Organoids from Neuroepithelial Stem Cells. Stem Cell Reports. 8, 1144-1154 (2017).
  43. Lancaster, M. A., Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols. 9 (10), 2329-2340 (2014).
  44. Dutta, D., Heo, I., Clevers, H. Disease Modeling in Stem Cell-Derived 3D Organoid Systems. Trends in Molecular Medicine. 23 (5), 393-410 (2018).
  45. Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature. 501 (7647), 373-379 (2013).
  46. Qian, X., et al. Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell. 165 (5), 1238-1254 (2016).
  47. Yan, Y., et al. Derivation of Cortical Spheroids from Human Induced Pluripotent Stem Cells in a Suspension Bioreactor. Tissue Engineering Part A. , 1-46 (2016).
  48. Obien, M. E. J., Deligkaris, K., Bullmann, T., Bakkum, D. J., Frey, U. Revealing neuronal function through microelectrode array recordings. Frontiers in Neuroscience. 9 (JAN), 423 (2015).
  49. Hales, C. M., Rolston, J. D., Potter, S. M. How to Culture, Record and Stimulate Neuronal Networks on Micro-electrode Arrays (MEAs). Journal of Visualized Experiments. (39), 1-7 (2010).
  50. Shigetomi, E., Patel, S., Khakh, B. S. Probing the Complexities of Astrocyte Calcium Signaling. Trends in Cell Biology. 26 (4), 300-312 (2016).
  51. Bagley, J. A., Reumann, D., Bian, S., Lévi-strauss, J., Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nat Methods. 14 (7), (2017).
check_url/pt/58034?article_type=t

Play Video

Citar este artigo
Cvetkovic, C., Basu, N., Krencik, R. Synaptic Microcircuit Modeling with 3D Cocultures of Astrocytes and Neurons from Human Pluripotent Stem Cells. J. Vis. Exp. (138), e58034, doi:10.3791/58034 (2018).

View Video