Summary

Gdba2cu 3 o7 的射频磁控管散射-/la0.67sr 0.67 mno 3 准双层薄膜上的 srtio 3 (sto) 单晶基板上

Published: April 12, 2019
doi:

Summary

在这里, 我们提出了一个协议, 以增长 LSMO 纳米粒子和 (Gd) bco 薄膜上 (001) SrTiO3 (sto) 单晶基板的射频 (rf) 溅射。

Abstract

在这里, 我们展示了一种方法, 涂层铁磁 la0.67 s0.33 mno 3 (lsmo) 纳米粒子上 (001) srtio3 (sto) 单晶基板射频 (rf) 磁控溅射.LSMO 纳米颗粒沉积的直径在10至20纳米之间, 高度在20至50纳米之间。同时, 利用射频磁控溅射在未经修饰和 lsmo纳米颗粒修饰的 sto 基板上制备了 (gd) ba 2 cu 3o 7 (gd) 薄膜.本报告还描述了 gdba2cu 3 o7性质. , 化学成分);还对磁化、磁迁移和超导传输特性进行了评价。

Introduction

孔掺杂锰铁矿 La0.67s0.33 mno 3 (lsmo)具有独特的特性, 如宽带间隙、半金属铁磁性和纠缠电子状态, 为潜在的可能性提供了非凡的机会.自旋语音应用1,2,3,4。目前, 许多研究人员正在努力利用 lsmo 的独特特性, 居住在高温超导薄膜的涡旋运动中, 如 (re) ba2cu3o7薄膜 (rebco, re = 稀土元素)5,6,7, 8,9,10, 11,12。具有铁磁纳米粒子的基板表面的纳米装饰将为诱导预期密度为 13,14的磁固定中心提供明确的位置。然而, 在高纹理表面 (如单晶基板和高纹理金属基板上) 控制纳米粒子的密度和几何形状的能力非常困难。最常见的是, 纳米粒子是合成和涂层在表面上使用金属有机分解方法15和脉冲激光沉积方法16, 17.脉冲激光沉积方法虽然可以提供在各种基材上涂覆的纳米粒子, 但很难实现大面积均匀纳米粒子的沉积。对于金属有机分解方法, 它们适用于纳米粒子的大面积沉积。然而, 纳米颗粒往往是不均匀的, 很容易被小的物理应力损坏。

在这些技术中, rf-磁控溅射具有许多优点。飞溅具有沉积速率高、成本低、缺乏有毒气体排放等问题。另外, 它很容易扩展到大面积基板18,19。该方法提供了 La0.67sr0.67mno 3 (lsmo) 纳米粒子的单步形成, 纳米颗粒易于沉积在单晶基板上.射频磁控溅射可在不同的基材上均匀地产生大面积纳米粒子, 而不考虑表面纹理和表面粗糙度20。通过调整溅射时间可以实现颗粒控制。通过调整靶基板的距离, 可以实现均匀性。Rf-磁控溅射的缺点是其对某些氧化物21的生长速率较低。在这种方法中, 目标原子 (或分子) 被氩离子从目标中溅射出来, 然后纳米粒子在气相22沉积在基板上。纳米粒子的形成发生在基板上的一个步骤23。该方法理论上适用于任何材料, 包括超导薄膜、电阻膜、半导体薄膜、铁磁薄膜。纳米粒子是非常稀缺的。

在这里, 我们演示了 gdba 2 cu 3o7srtio3 (sto) 单晶基板上的沉积方法。在这一过程中使用了两种目标材料,gdba2cu 3o7 和 la0.67sr 0.67 mno3目标.Srtio 3 (sto) 单晶基板涂覆了 gdba 2 cu 3o7薄膜和 gdba2cu3o7 0.33MnO3准双层薄膜。

在该协议中, gdba2 cu3o 7la 0.67 s0.33 mno 3 准双层薄膜沉积在 sto (001) 基板上的射频磁控溅射.目标直径为60毫米, 目标与基板之间的距离约为10厘米。加热器是位于基板上方1厘米处的灯泡。该系统中的最高温度 850°C.该系统有5种不同的基板。射频磁控溅射 gdba2cu 3o7 la 0.67 s0.33 mno 3 准双层薄膜由两个步骤组成, 即制备基板和射频磁控管溅射过程。溅射系统的图片如 s1所示。

Protocol

1. 基板和目标准备 注: 本节介绍溅射沉积室和单晶 SrTiO (sto)基板的制备。 在射频磁控溅射过程中使用 10 mm x 10 Mm stio 3 (sto) 单晶基板。 在超声波浴中, 在室温下依次清洁异丙醇和去离子水中的基材10分钟。然后用氮气干燥基材, 这是为了均匀覆盖基板和良好的薄膜粘附。 用银粉导电胶将 (001) STO 基板安装在基板支架上。将这些装入真空室?…

Representative Results

裸层和 LSMO 装饰的 STO 基板上的 (Gd) bco 薄膜厚度均为 500nm, 用表面轮廓仪进行了测量。薄膜厚度受溅射时间的控制。图 1a, b显示了 LSMO 纳米粒子 (溅射时间为 10秒) 在 1.0 cm x 1.0 cm 单晶 sto 基板上的 afm 图像, 证明了在 sto 基板上均匀生长的 LSMO 纳米粒子。用原子力显微镜 (AFM) 对薄膜的表面和测量粗糙度进行了表征。这些 LSMO 纳米粒子的直径…

Discussion

在这里, 我们已经证明了该方法可以用于制备 LSMO 铁磁纳米粒子的均匀分布在 SrTiO 3 ( sto) 单晶基板上。(Gd) BCO 薄膜也可以沉积在裸露和 LSMO 装饰的 STO 基板上。通过适当调整沉积参数, 如生长温度和靶基板距离, 这种方法应有助于沉积不同种类的磁性和非磁性颗粒或层, 例如 CeO 2、ysz((四氧化钛)24和 ito (氧化锡).

该协议的一个关键步骤是 …

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家自然科学基金的支持 (51502168 号;No.1 1504227) 和上海市自然科学基金 (16zr1413600)。作者感谢上海交通大学仪器分析中心和马泰分析实验室提供的专业技术援助。

Materials

Sputter Deposition System Shenyang scientific instruments Limited by Share Ltd Bespoke
SrTiO3 Single Crystal Substrate Hefei Ke crystal material technology Co., Ltd Single-sided epi-polished (001) orientation
La0.67Sr0.33MnO3 sputtering target Hefei Ke crystal material technology Co., Ltd Bespoke 60 mm diameter
GdBa2Cu3O7δ sputtering target Hefei Ke crystal material technology Co., Ltd Bespoke 60 mm diameter
Atomic Force Microscope Brüker Dimension Icon
X-ray Diffractometer Brüker D8 Discover
Physical Property Measurement System Quantum Design PPMS 9

Referências

  1. Gong, J., Zheng, D., Li, D., Jin, C., Bai, H. Lattice distortion modified anisotropic magnetoresistance in epitaxial La0.67Sr0.33MnO3 thin films. Journal of Alloys and Compounds. 735, 1152-1157 (2018).
  2. Wang, J., Han, Z., Bai, J., Luo, B., Chen, C. Magnetoelectric coupling in oxygen deficient La0.67Sr0.33MnO3-δ/BaTiO3 composite film. Physica B: Condensed Matter. 534, 141-144 (2018).
  3. Duan, Z., et al. Facile fabrication of micro-patterned LSMO films with unchanged magnetic properties by photosensitive sol-gel method on LaAlO3 substrates. Ceramics International. 42 (12), 14100-14106 (2016).
  4. Xu, P., Huffman, T. J., Kwak, I. H., Biswas, A., Qazilbash, M. M. Temperature dependent infrared nano-imaging of La0.67Sr0.33MnO3 thin film. Journal of Physics-Condensed Matter. 30 (2), (2018).
  5. Bulaevskii, L. N., Chudnovsky, E. M., Maley, M. P. Magnetic pinning in superconductor-ferromagnet multilayers. Applied Physics Letters. 76 (18), 2594-2596 (2000).
  6. Chen, C. Z., et al. Flux pinning of stress-induced magnetic inhomogeneity in the bilayers of YBa2Cu3O7−δ/La0.67Sr0.33MnO3−δ. Journal of Applied Physics. 106 (9), 093902 (2009).
  7. Chen, C. Z., et al. Robust high-temperature magnetic pinning induced by proximity in YBa2Cu3O7−δ/La0.67Sr0.33MnO3 hybrids. Journal of Applied Physics. 109 (7), 073921 (2011).
  8. Huang, J., et al. Magnetic properties of (CoFe2O4)x:(CeO2)1−x vertically aligned nanocomposites and their pinning properties in YBa2Cu3O7−δ thin films. Journal of Applied Physics. 115 (12), 123902 (2014).
  9. Lange, M., Bael, M. J. V., Bruynseraede, Y., Moshchalkov, V. V. Nanoengineered Magnetic-Field-Induced Superconductivity. Physical Review Letters. 90 (19), 197006 (1970).
  10. Rakshit, R. K., Budhani, R. C., Bhuvana, T., Kulkarni, V. N., Kulkarni, G. U. Inhomogeneous vortex-state-driven enhancement of superconductivity in nanoengineered ferromagnet-superconductor heterostructures. Physical Review B. 77 (5), 052509 (2008).
  11. Guo, H., Ward, T. Z. Fabrication of Spatially Confined Complex Oxides. Journal of Visualized Experiments. 77, e50573 (2013).
  12. Wang, Y., Li, Y., Liu, L., Xu, D. Improvement of flux pinning in GdBa2Cu3O7-delta thin film by nanoscale ferromagnetic La0.67Sr0.33MnO3 pretreatment of substrate surface. Ceramics International. 44 (1), 225-230 (2018).
  13. Martín, J. I., Vélez, M., Nogués, J., Schuller, I. K. Flux Pinning in a Superconductor by an Array of Submicrometer Magnetic Dots. Physical Review Letters. 79 (10), 1929-1932 (1997).
  14. Morgan, D. J., Ketterson, J. B. Asymmetric Flux Pinning in a Regular Array of Magnetic Dipoles. Physical Review Letters. 80 (16), 3614-3617 (1998).
  15. Gutierrez, J., et al. Anisotropic c-axis pinning in interfacial self-assembled nanostructured trifluoracetate-YBa2Cu3O7−x films. Applied Physics Letters. 94 (17), 172513 (2009).
  16. Tran, D. H., et al. Enhanced critical current density in GdBa2Cu3O7-δ thin films with substrate surface decoration using Gd2O3 nanoparticles. Thin Solid Films. 526, 241-245 (2012).
  17. Jha, A. K., Khare, N., Pinto, R. Interface engineering using ferromagnetic nanoparticles for enhancing pinning in YBa2Cu3O7-delta thin film. Journal of Applied Physics. 110 (11), (2011).
  18. Casotti, D., et al. Ageing effects on electrical resistivity of Nb-doped TiO2 thin films deposited at a high rate by reactive DC magnetron sputtering. Applied Surface Science. 455, 267-275 (2018).
  19. Li, Y., et al. Preparation of single-phase Ti2AlN coating by magnetron sputtering with cost-efficient hot-pressed Ti-Al-N targets. Ceramics International. 44 (14), 17530-17534 (2018).
  20. Mahdhi, H., Djessas, K., Ben Ayadi, Z. Synthesis and characteristics of Ca-doped ZnO thin films by rf magnetron sputtering at low temperature. Materials Letters. 214, 10-14 (2018).
  21. Shen, H., Wei, B., Zhang, D., Qi, Z., Wang, Z. Magnetron sputtered NbN thin film electrodes for supercapacitors. Materials Letters. 229, 17-20 (2018).
  22. Sinnarasa, I., et al. Influence of thickness and microstructure on thermoelectric properties of Mg-doped CuCrO2 delafossite thin films deposited by RF-magnetron sputtering. Applied Surface Science. , 244-250 (2018).
  23. Thi-Thuy-Nga, N., Chen, Y. -. H., Chen, Z. -. M., Cheng, K. -. B., He, J. -. L. Microstructure near infrared reflectance, and surface temperature of Ti-O coated polyethylene terephthalate fabrics prepared by roll-to-roll high power impulse magnetron sputtering system. Thin Solid Films. , 1-8 (2018).
  24. Wang, Y., Xu, D., Li, Y., Liu, L. Texture and morphology developments of Yttria-stabilized zirconia (YSZ) buffer layer for coated conductors by RF sputtering. Surface & Coatings Technology. 232, 497-503 (2013).
  25. Petrisor, T., et al. Magnetic pinning effects of epitaxial LaxSr1-xMnO3 nanostructured thin films on YBa2Cu3O7-delta layers. Journal of Applied Physics. 112 (5), (2012).
check_url/pt/58069?article_type=t

Play Video

Citar este artigo
Wang, Y., Li, Z., Liu, Y., Li, Y., Liu, L., Xu, D., Luo, X., Gao, T., Zhu, Y., Zhou, L., Xu, J. Radio Frequency Magnetron Sputtering of GdBa2Cu3O7δ/ La0.67Sr0.33MnO3 Quasi-bilayer Films on SrTiO3 (STO) Single-crystal Substrates. J. Vis. Exp. (146), e58069, doi:10.3791/58069 (2019).

View Video