Summary

Синтез и характеристика 1,2-Dithiolane изменение самостоятельной сборки пептиды

Published: August 20, 2018
doi:

Summary

Протокол для синтеза 1,2-dithiolane изменение пептида и характеристика супрамолекулярные структуры пептида в результате самостоятельной сборки.

Abstract

Этот доклад фокусируется на синтез N-конечная 1,2-dithiolane изменение самостоятельной сборки пептида и характеристика в результате самостоятельного собрал супрамолекулярные структуры. Синтетические маршрут использует твердофазный пептидного синтеза с муфтой на смолы dithiolane прекурсоров молекулы, 3-(acetylthio) -2-(acetylthiomethyl) Пропионовая кислота и при содействии микроволновой thioacetate deprotection пептида N-конечная остановка перед окончательной расщепления из смолы приносить 1,2-dithiolane изменение пептид. После очистки высокой производительности жидкостной хроматографии (ВЭЖХ) 1,2-dithiolane пептид, производные от затравок ядро пептид значения, связанные с болезнью Альцгеймера пептид показано самостоятельно собрать кросс β волокон амилоида. Представлены протоколы характеризовать волокон амилоида Фурье ИК-спектроскопии (FT-IR), циркуляр дихроизма спектроскопии (CD) и просвечивающей электронной микроскопии (ТЕА). Методы изменения N-терминала с 1,2-dithiolane группу хорошо изученных самостоятельной сборки пептиды теперь могут быть изучены как модель системы для разработки стратегий пост Ассамблеи модификации и изучения динамических ковалентных химии на супрамолекулярная пептид нановолокно поверхности.

Introduction

Надежные пептид Бонд, образуя химии участвует в пептидной Твердофазный синтез и способность контролировать длину последовательности и сделать пептидов, которые самостоятельно собрать в супрамолекулярные структуры сильно исследуемой области. Факторы, которые контролируют и стабилизировать пептид собственн-собранные структур, включая боковой цепи их пространственной и электростатических взаимодействий, спекание водородом и гидрофобных эффекты1, служить набор правил проектирования. Исследования в этих фундаментальных Дизайн правила продолжает прогрессировать, следующий логический шаг в пептидной самостоятельной сборки включает расширение разнообразия на основе пептида структур и функций. При самостоятельной сборке пептиды являются универсальным биоматериал, были использованы для многих биомедицинских приложений тюнинг пептида последовательности или Ассамблеи условия2,3,4, разработка стратегий для изменения после Ассамблеи пептид nanofibers5,6,7,8,9 остается относительно неисследованные области.

Динамических дисульфида обмен и тиоловых химии на поверхности супрамолекулярных структур является одной из областей, которая имеет потенциал, чтобы принести новые и функциональные биоматериалы. Включение 1,2-dithiolane постановление (обычно производное липоевой кислоты (ла) или asparagusic кислоты (aa)) были зарегистрированы в липосомы систем10,11, блок сополимеры12,13, а Организация якоря на поверхности14,15. Здесь мы приводим синтеза и характеристика самостоятельной сборки пептид, производный от затравок ядро пептид значения, связанные с болезнью Альцгеймера, измененный в N-terminus с 1,2-dithiolane функциональные группы16, 17. Результате супрамолекулярные волокна теперь служат экспериментальной платформы для изучения дисульфида обмен и тиоловых реактивности в супрамолекулярные поверхности волокон амилоида18.

Protocol

1. Синтез и очистки 1,2-Dithiolane изменение пептида Синтез dithiolane прекурсоров, 3-(acetylthio) -2-(acetylthiomethyl) Пропионовая кислота19. Добавить 1 g 3-бром – 2-(bromomethyl) пропионовой кислоты (1 экв.) растворяют в минимальное количество 1 M NaOH (примерно 4 мл) до 25 мл круглым дном реакции ?…

Representative Results

Помимо первоначальные одношаговым синтез dithiolane прекурсоров молекулы остальная часть 1,2-dithiolane изменение пептидного синтеза происходит на твердой поддержки (рис. 1A). Преобразование 3-бром – 2-(bromomethyl) пропионовой кислоты 3-(acetylthio) -2-(acetylthiomethyl) Пропионовая ки…

Discussion

Эта статья обсуждает детали как синтеза и очистки 1,2-dithiolane изменение N-терминальный самостоятельной сборки пептида и характеристики полученных супрамолекулярных структур. Синтез пептида 1,2-dithiolane, сообщили здесь имеет преимущества, включая одношаговый синтеза для производства прекурс…

Declarações

The authors have nothing to disclose.

Acknowledgements

Авторы хотели бы поблагодарить д-р B. Эллен Scanley за ее техническую подготовку и помочь с помощью ТЕА в Коннектикут государственных колледжей и университетов (CSCU) центр нанотехнологий и доктор Ишита Мукерджи в Уэслианском университете для доступа к ее CD Спектрофотометр. Работе в части было поддержано институтом наук в университете Фэрфилд, Коннектикут НАСА космический Грант консорциум и Национальный научный фонд под Грант номер ЧЕ-1624774.

Materials

Rink amide MBHA resin, high load Gyros Protein Technologies RAM-5-HL Avoid contact with skin and eyes; do not inhale
N,N-Dimethylformamide Fisher Scientific D119-4 Flammable liquid and vapor; irritating to eyes and skin; Use personal protective equipment; keep away from open flame
Fmoc-L-Val-OH Gyros Protein Technologies FLA-25-V Wear personal protective equipment; do not inhale
Fmoc-L-Leu-OH Gyros Protein Technologies FLA-25-L Wear personal protective equipment; do not inhale
Fmoc-L-Lys(Boc)-OH Gyros Protein Technologies FLA-25-KBC Wear personal protective equipment; do not inhale
Fmoc-L-Phe-OH Gyros Protein Technologies FLA-25-F Wear personal protective equipment; do not inhale
Fmoc-L-Ala-OH Gyros Protein Technologies FLA-25-A Wear personal protective equipment; do not inhale
Fmoc-L-Gln(Trt)-OH Gyros Protein Technologies FLA-25-QT Wear personal protective equipment; do not inhale
N,N,N′,N′-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate Gyros Protein Technologies 26432 Causes skin, eye and respiratory irritation; do not inhale; use under hood or in well ventilated area
0.4 M N-methylmorpholine in DMF Gyros Protein Technologies PS3-MM-L highly flammable; wear personal protective equipment; keep away from heat and keep container tightly closed; do not inhale or swallow; wash skin thoroughly after handling
20% piperidine in DMF Gyros Protein Technologies PS3-PPR-L Causes severe eye and skin burns; Flammable Liquid and vapor; Do not inhale
dichloromethane Fisher Scientific D37-4 May cause cancer; Do not inhale; Wear personal protective equipment; use under hood only; if contacted rise with water for at least 15 minutes and obtain medical attention
acetonitrile Fisher Scientific A998-4 Flammable; irritating to eyes; Use personal protective equipment; Use only under a fume hood; keep away from open flame or hot surface; if contacted rinse wiith water for at least 15 minutes and obtain medical attention
trifluoroacetic acid Fisher Scientific A116-50 Causes severe burns; do not inhale; harmful to aquatic life; use personal protective equipment; use only under fume hood; if contacted rinse with water for at least 15 minutes and obain immediate medical attention
4% uranyl acetate Electron Microscopy Sciences 22400-4 Do not inhale; harmful to aquatic life
4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid Acros Organics AC172571000 Do not inhale; use outdoors or in well-ventilated area
nitrogen Gas TechAir Contents under pressure, may explode if heated
3-bromo-2-(bromomethyl)propionic acid Alfa Aesar AAA1963014 Do not inhale; causes irritation to skin and eyes; corrosive
sodium hydroxide Fisher Scientific S318-100 Use personal protective equipment; use only under fume hood; if contact rinse area for at least 15 minutes and obtain medical attention
potassium thioacetate Acros Organics AC221300250 Causes skin and eye irritation; do not inhale; use personal protective equipment
sulfuric acid Fisher Scientific SA213 Causes burns; keep away from water; keep away from combustible material; do not inhale; use personal protective equipment; if contact rinse area for at least 15 minutes and obtain medical attention
chloroform-d Acros Organics AC320690075 Possible cancer hazard; irritating to skin and eyes; do not inhale; Use personal protective equipment; use only under fume hood; If contact rinse area for at least 15 minutes and obtain medical attention
chloroform Fisher Scientific C298-4 Possible cancer hazard; irritating to skin and eyes; do not inhale; Use personal protective equipment; use only under fume hood; If contact rinse area for at least 15 minutes and obtain medical attention
N,N-diisopropylethylamine Acros Organics AC367841000 Highly flammable; harmful to aquatic life; wear personal protective equipment; do not swallow
ammonium hydroxide Fisher Scientific A669S-500 Corrosive; do not inhale
methanol Fisher Scientific A452-4 Flammable liquid and vapor; use personal protective equipment; do not inhale; If contact rinse area for at least 15 minutes and obtain medical attention
triisopropylsilane Sigma Aldrich 233781 Flammable; use personal proctective safety equipment; keep container tightly closed
diethyl ether Fisher Scientific E138-1 Extremely flammable; Irritating to skin and eyes; Use personal protective equipment
2,5-dihydroxybenzoic acid Sigma Aldrich 39319-10x10MG-F do not inhale; irritating to skin and eyes
alpha-cyano-4-hydroxycinnamic acid Alfa Aesar AAJ67635EXK
c18 zip-tip Millipore ZTC18S096
tris(2-carboxyethyl) phospine hydrochloride Thermo Scientific PI20490
silica gel 60 F254 coated aluminum-backed TLC sheets EMD Millipore 1.05549.0001
Thin walled Precision NMR tubes Bel-Art 663000585 5mm O.D.
All-plastic Norm-Ject syringes Air Tite AL10
single-use needle BD PrecisionGlide BD 305185 used needles get disposed on in sharps waste container
disposable fritted syringe Torviq SF1000LL 10mL fritted syringes were used in the report, but larger syringes are avaibale if needed for larger scale synthesis.
carbon grid Ted Pella, Inc. CF200-CU Make sure to prepare samples and staining on the carbon grid side, not the shiny copper side of grid
self-closing tweezers Electron Microscopy Sciences 78318-3X very sharp tips, length: 120 mm
0.1 mm short path length cell Starna Cells, Inc. 20/C-Q-0.1 Fragile
10mL Vessel Caps CEM 909210
10mL Pressure Vessels CEM 908035
Aeris Semi-Prep HPLC column Phenomenex 00F-4632-N0 150 x 10mm
cell holder Starna Cells, Inc. CH-2049 Needed when using short pathlength cells
PS3 peptide synthesizer Gyros Protein Technologies
DiscoverSP Microwave Reactor CEM
centrifuge HERMLE Z 206 A used a fixed 6×50 mL rotor
HPLC Shimadzu UV Detector
nuclear magnetic resonance spectrometer Avance, Bruker 300 MHz
MALDI-TOF mass spectrometer Axima Confidence, Shimadzu
lyophilizer Millrock Technology BT85A
Fourier-Transform Infrared Spectrometer Alpha Tensor, Bruker
Transmission Electron Microscope Tecnai Spirit, FEI Used with Gatan Orius Fiberoptic CCD digital camera. Accessed at CSCU Center for Nanotechnology
Circular Dichroism Spectropolarimeter J-810, JASCO Used with a six-cell Peltier temperature controller. Accessed at Wesleyan University.

Referências

  1. Wang, J., Liu, K., Xing, R., Yan, X. Peptide self-assembly: Thermodynamics and kinetics. Chemical Society Reviews. 45, 5589-5604 (2016).
  2. Dong, R., et al. Functional supramolecular polymers for biomedical applications. Advanced Materials. 27, 498-526 (2015).
  3. Edwards-Gayle, C. J. C., Hamley, I. W. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Organic and Biomolecular Chemistry. 15, 5867-5876 (2017).
  4. Goor, O. J. G. M., Hendrikse, S. I. S., Dankers, P. Y. W., Meijer, E. W. From supramolecular polymers to multi-component biomaterials. Chemical Society Reviews. 46, 6621-6637 (2017).
  5. DiMaio, J. T. M., Doran, T. M., Ryan, D. M., Raymond, D. M., Nilsson, B. L. Modulating supramolecular peptide hydrogel viscoelasticity using biomolecular recognition. Biomacromolecules. 18, 3591-3599 (2017).
  6. DiMaio, J. T. M., Raymond, D. M., Nilsson, B. L. Display of functional proteins on supramolecular peptide nanofibrils using a split-protein strategy. Organic and Biomolecular Chemistry. 15, 5279-5283 (2017).
  7. Mahmoud, Z. N., Gunnoo, S. B., Thomson, A. R., Fletcher, J. M., Woolfson, D. N. Bioorthogonal dual functionalization of self-assembling peptide fibers. Biomaterials. 32, 3712-3720 (2011).
  8. Petkau-Milroy, K., Uhlenheuer, D. A., Spiering, A. J. H., Vekemans, J. A. J. M., Brunsveld, L. Dynamic and bio-orthogonal protein assembly along a supramolecular polymer. Chemical Science. 4, 2886-2891 (2013).
  9. Li, A., et al. Neurofibrillar tangle surrogates: Histone H1 binding to patterned phosphotyrosine peptide nanotubes. Bioquímica. 53, 4225-4227 (2014).
  10. Sadownik, A., Stefely, J., Regen, S. L. Polymerized liposomes formed under extremely mild conditions. Journal of the American Chemical Society. 108, 7789-7791 (1986).
  11. Zhang, N., et al. ATN-161 Peptide functionalized reversibly cross-linked polymersomes mediate targeted doxorubicin delivery into melanoma-bearing C57BL/6 mice. Molecular Pharmaceutics. 14, 2538-2547 (2017).
  12. Margulis, K., et al. Formation of polymeric nanocubes by self-assembly and crystallization of dithiolane-containing triblock copolymers. Angewandte Chemie International Edition. 56, 16357-16362 (2017).
  13. Zhang, X., Waymouth, R. 1,2-Dithiolane-Derived Dynamic, Covalent Materials: Cooperative Self-Assembly and Reversible Cross-Linking. Journal of the American Chemical Society. 139, 3822-3833 (2017).
  14. Sakia, N., Matile, S. Stack exchange strategies for the synthesis of covalent double-channel photosystems by self-organizing surface-initiated polymerization. Journal of the American Chemical Society. 133, 18542-18545 (2011).
  15. Uji, H., Morita, T., Kimura, S. Molecular direction dependence of single-molecule conductance of a helical peptide in molecular junction. Physical Chemistry Chemical Physics. 15, 757-760 (2013).
  16. Liang, C., Ni, R., Smith, J. E., Childers, W. S., Mehta, A. K., Lynn, D. G. Kinetic intermediates in amyloid assembly. Journal of the American Chemical Society. 136, 15116-15149 (2014).
  17. Smith, J. E., et al. Defining the dynamic conformational network of cross-β peptide assembly. Israel Journal of Chemistry. 55, 763-769 (2015).
  18. Black, S. P., Sanders, J. K. M., Stefankiewicz, A. R. Disulfide exchange: Exposing supramolecular reactivity through dynamic covalent chemistry. Chemical Society Reviews. 43, 1861-1872 (2014).
  19. Vendetti, A., et al. Dihydroasparagusic acid: Antioxidant and tyrosinase inhibitory activities and improved synthesis. Journal of Agricultural and Food Chemistry. 61, 6848-6855 (2013).
  20. Stawikowski, M., Fields, G. B. Introduction to peptide synthesis. Current Protocols in Protein Science. 26, (2002).
  21. Canadell, J., Goossens, H., Klumperman, B. Self-healing materials based on disulfide links. Macromolecules. 44, 2536-2541 (2011).
  22. Lafont, U., van Zeijl, H., van der Zwaag, S. Influence of cross-linkers on the cohesive and adhesive self-healing ability of polydisulfide-based thermosets. ACS Applied Materials and Interfaces. 4, 6280-6288 (2012).
  23. Komaromy, D., Stuart, M. C. A., Santiago, G. M., Tezcan, M., Krasnikov, V. V., Otto, S. Self-assembly can direct dynamic covalent bond formation toward diversity or specificity. Journal of the American Chemical Society. 139, 6234-6241 (2017).
  24. McAvery, K. M., Guan, B., Fortier, C. A., Tarr, M. A., Cole, R. B. Laser-induced oxidation of cholesterol observed during MALDI-TOF mass spectrometry. Journal of the American Society for Mass Spectrometry. 22, 659-669 (2011).
  25. Krimm, S., Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry. 38, 181-364 (1986).
  26. Halverson, K. J., Sucholeiki, I., Ashburn, T. T., Lansbury, P. T. Location of β-sheet-forming sequences in amyloid proteins by FTIR. Journal of the American Chemical Society. 113, 6701-6703 (1991).
  27. Greenfield, N., Fasman, G. D. Computed circular dichroism spectra for the evaluation of protein confirmation. Bioquímica. 8, 4108-4116 (1969).
  28. . ImageJ Available from: https://imagej.nih.gov/ij (2016)
  29. Roy, S., Shinde, S., Hamilton, G. A., Hartnett, H. E., Jones, A. K. Artificial [FeFe]-hydrogenase: On resin modification of an amino acid to anchor a hexacarbonyldiiron cluster in a peptide framework. European Journal of Inorganic Chemistry. 2011, 1050-1055 (2011).
  30. Van Duinen, S. G., Castano, E. M., Prelli, F., Bots, G. T. A. B., Luyendijk, W., Frangione, B. Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America. 84, 5991-5994 (1987).
  31. Barth, A. The infrared absorption of amino acid sidechains. Progress in Biophysics and Molecular Biology. 74, 141-173 (2000).
  32. Jayaraman, M., et al. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing Huntingtin fragments. Journal of Molecular Biology. 415, 881-899 (2012).
check_url/pt/58135?article_type=t

Play Video

Citar este artigo
Neves, R., Stephens, K., Smith-Carpenter, J. E. Synthesis and Characterization of 1,2-Dithiolane Modified Self-Assembling Peptides. J. Vis. Exp. (138), e58135, doi:10.3791/58135 (2018).

View Video