Summary

同位素稀释-高效液相色谱-抗生素在危重症患者中的多重治疗药物监测

Published: August 30, 2018
doi:

Summary

在此, 我们提出了一种基于串联质谱的协议, 用于定量治疗重症监护病房中的常用抗生素, 即头孢吡肟、美罗培南、环丙沙星、莫西沙星、利奈和哌拉西林。

Abstract

许多临床设施对抗生素的治疗药物的需求不断增加, 特别是在实施医院抗生素管理计划方面。

在目前的工作中, 我们提出了一个多用途的高效液相色谱-串联质谱 (HPCL ms/ms) 协议, 以量化的头孢吡肟, 美罗培南, 环丙沙星, 莫西沙星, 利奈, 和哌拉西林, 常用重症监护病房的抗生素。该方法以前是根据欧洲药物管理局的指导方针进行全面验证的。

经过快速的样品清理, 在4分钟内将分析物分离在 C8 反相色谱柱上, 用电喷雾电离 (ESI +) 质谱中相应的稳定同位素标记的内部标准进行多重反应。时间监视 (MRM)。所提出的方法采用简单的仪器设置, 色谱条件均匀, 可用于临床实验室的日常和强健的抗生素治疗药物监测。校准曲线横跨药代动力学的浓度范围, 从而包括抗生素量接近最小抑制浓度 (MIC) 的敏感细菌和峰值浓度 (C最大), 得到的丸管理方案。如果不需要在样品清理前进行血清稀释, 则可以通过多种测量方法获得被管理的抗生素曲线下的区域。

Introduction

尽管抗生素已经彻底改变了医学的实践, 但严重的细菌感染仍然是导致严重疾病发病率和死亡率的主要原因1。在这方面, 迅速管理适当剂量的适当抗感染, 对疾病控制2至关重要。

越来越多的证据表明, 用广谱抗生素进行的经验治疗随着患者数量的复杂性越来越成问题。对于重症监护病房 (ICU) 尤其如此, 在这种情况下, 关键药动学 (PK) 参数的巨大的个体间变异性经常被观察到3,4。因此, ICU 患者即将面临亚治疗水平的危险, 治疗成功率不足5,6。再次, 患者不必要地暴露在过高的抗生素浓度, 可能导致严重的不良事件, 没有临床好处7。抗生素滥用和剂量不足也助长了抗生素耐药性的传播, 这正日益成为对公共卫生8的威胁。

为了改进抗生素的使用, 并尽可能长时间地保存 effectivenessas, 世界卫生组织于2015年发起了一项关于抗菌素耐药性的全球行动计划.抗生素管理计划是10国家公共卫生战略中谨慎使用抗菌药物的一个重要基石, 帮助临床医生提高患者护理质量11 , 同时显著降低抗生素耐药性12。通过应用治疗药物监测 (TDM) 在个别患者中的抗生素剂量是这方面的一个关键工具13

到目前为止, 商业上可用的 TDM 化验仅可用于糖肽类抗生素和氨基糖苷类。对其他类中的物质进行量化通常需要内部方法开发或验证, 这可能很麻烦。因此, 我们详细介绍了一种基于稳健质谱分析的协议, 该方法可用于在其临床相关浓度范围内对 ICU 中最相关的抗生素进行量化14。该方法最近在我们的质谱仪中建立, 并已被应用于 ICU 的常规 TDM 从那以后。该程序使用一个简单的分析设置和统一的样本清理, 允许快速实施抗生素 TDM 在许多设施的质谱能力。

本文所描述的协议是针对人血清中头孢吡肟、美罗培南、环丙沙星、莫西沙星、利奈和哌拉西林的定量化而优化的, 采用同位素稀释液相色谱 (LC) 与串联质量光谱 (ms/毫秒)。对于同位素稀释 LC-ms/毫秒方法, 稳定的同位素标记化合物添加到一个特定的矩阵 (血清) 感兴趣的样本。同位素标记的标准可以区别于它们未标记的对应物, 即由于天然分子的不同分子量和它们的破碎产物, 而被称为母体离子对女儿离子的转变。由于同位素标记化合物与未标记的对应物具有几乎相同的整体物理化学行为, 因此它们是 ms/ms 的理想内部标准, 允许近基质独立的分析物质量化, 具有高度的精确度15。目前, 许多可用于小分子量化的稳定同位素标记内部标准, 包括抗菌素的 TDM, 都是商业上可用的。

用分析 C8 烷基链长度反相柱 (100 毫米 x 2.1 毫米, 3 µm 粒度), 对所述协议中的抗生素分析仪进行了色谱分离。在方法开发过程中, 所有分析物的内部标准归一化矩阵因子介于94.6% 和105.4% 之间, ≤8.3% 的变化系数为14

Protocol

注: 建议在处理有机溶剂时, 如甲醇, 在通风罩工作。准备所有的缓冲和移动阶段的容积烧瓶。如未另行规定, 溶液可在室温下贮存1月。 1. 校准仪和质量控制样品的编制 注: 在补充文件中给出了用于准备库存和穗状溶液的相应数据分析表。出于可追溯性的原因, 请在相应的列中插入制造商、目录编号和每种抗生素的大量数量。将所有抗生素溶解?…

Representative Results

使用描述的协议, 在图 2中描述了一个典型的色谱。根据美国药典 (USP) 色谱准则16, 目前系统中的柱死体积是用 ~ 0.22 毫升和额外柱容积 (包括喷油器、油管和连接器) 确定的, 其数量为0.08 毫升, 给0.30 毫升的容纳量。计算出的所有分析物的保留因子为 2.8 (用于头孢吡肟)-4.2 (用于哌拉西林)。 <p class="jove_content" fo:keep-together.within-page="1…

Discussion

在本手稿中, 我们报告了一个简单和稳健的串联质谱法的方法, 以量化的常用抗生素在 ICU19, 即头孢吡肟, 美罗培南, 环丙沙星, 莫西沙星, 利奈, 和哌拉西林14。电子表格伴随着编写抗生素库存解决方案、校准仪和质量控制的手稿, 同时考虑到抗生素的纯度和 counterions 的分子量。鉴于抗生素浓度相当高, 从分析的角度来看, 它们的量化应该不是特别的挑战。因此, 我?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢 Schütze 博士为他的帮助建立了提出的方法和博士 Zoller 为有价值的输入有关正确的校准范围。作者还认识到质谱设备的技术人员。

Materials

cefepime hydrochloride Sigma-Aldrich 1097636 USP Reference Standard
meropenem trihydrate Sigma-Aldrich Y0001252 EP Reference Standard
ciprofloxacin Sigma-Aldrich 17850
moxifloxacin hydrochloride Sigma-Aldrich SML1581
linezolid Toronto Research Chemicals L466500
piperacillin sodium salt Sigma-Aldrich 93129
cefepime-13C12D3 sulfate Alsachim C1297 Isotope labelled internal standard for cefepime
meropenem-D6 Toronto Research Chemicals M225617 Isotope labelled internal standard for meropenem
ciprofloxacin-D8 Toronto Research Chemicals C482501 Isotope labelled internal standard for ciprofloxacin
moxifloxacin-13C1D3 hydrochloride Toronto Research Chemicals M745003 Isotope labelled internal standard for moxifloxacin
linezolid-D3 Toronto Research Chemicals L466502 Isotope labelled internal standard for linezolid
piperacillin-D5 Toronto Research Chemicals P479952 Isotope labelled internal standard for piperacillin
methanol JT Baker 8402
HPLC grade water JT Baker 4218
formic acid Biosolve 6914132
acetic acid Biosolve 1070501
ammonium formate Sigma-Aldrich 70221-25G-F
tert-Butyl methyl ether Merck 101845
Fortis 3 μm C8 100 * 2.1 mm Fortis F08-020503
Ti-PEEK-encased Prifilter (2 μm) Chromsystems 15011
2795 Alliance HPLC system Waters 176000491
Quattro micro API Tandem Quadrupole System Waters 720000338
QuanLynx 4.1 software Waters / Data evaluation software provided by the mass spectrometer manufacturer

Referências

  1. Fleischmann, C., et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. American Journal of Respiratory and Critical Care Medicine. 193 (3), 259-272 (2016).
  2. Dellinger, R. P., et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine. 39 (2), 165-228 (2013).
  3. Lodise, T. P., Drusano, G. L. Pharmacokinetics and pharmacodynamics: optimal antimicrobial therapy in the intensive care unit. Critical Care Clinics. 27 (1), 1-18 (2011).
  4. Macedo, R. S., Onita, J. H., Wille, M. P., Furtado, G. H. Pharmacokinetics and pharmacodynamics of antimicrobial drugs in intensive care unit patients. Shock. 39, 24-28 (2013).
  5. Petersson, J., Giske, C. G., Eliasson, E. Standard dosing of piperacillin and meropenem fail to achieve adequate plasma concentrations in ICU patients. Acta Anaesthesiologica Scandinavica. 60 (10), 1425-1436 (2016).
  6. Abdul-Aziz, M. H., Lipman, J., Mouton, J. W., Hope, W. W., Roberts, J. A. Applying pharmacokinetic/pharmacodynamic principles in critically ill patients: optimizing efficacy and reducing resistance development. Seminars in Respiratory and Critical Care Medicine. 36 (1), 136-153 (2015).
  7. Imani, S., Buscher, H., Marriott, D., Gentili, S., Sandaradura, I. Too much of a good thing: a retrospective study of beta-lactam concentration-toxicity relationships. Journal of Antimicrobial Chemotherapy. 72 (10), 2891-2897 (2017).
  8. Ventola, C. L. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy & Therapeutics. 40 (4), 277-283 (2015).
  9. Pulcini, C. Antibiotic stewardship: update and perspectives. Clinical Microbiology and Infection. 23 (11), 791-792 (2017).
  10. Cairns, K. A., et al. The impact of a multidisciplinary antimicrobial stewardship team on the timeliness of antimicrobial therapy in patients with positive blood cultures: a randomized controlled trial. Journal of Antimicrobial Chemotherapy. 71 (11), 3276-3283 (2016).
  11. Baur, D., et al. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis. Lancet Infectious Diseases. 17 (9), 990-1001 (2017).
  12. Roberts, J. A., Norris, R., Paterson, D. L., Martin, J. H. Therapeutic drug monitoring of antimicrobials. British Journal of Clinical Pharmacology. 73 (1), 27-36 (2012).
  13. Paal, M., Zoller, M., Schuster, C., Vogeser, M., Schutze, G. Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC-MS/MS method. Journal of Pharmaceutical and Biomedical Analysis. 152, 102-110 (2018).
  14. Vogeser, M., Seger, C. Pitfalls associated with the use of liquid chromatography-tandem mass spectrometry in the clinical laboratory. Clinical Chemistry. 56 (8), 1234-1244 (2010).
  15. United States Pharmacopeia and National Formulary. Chapter <621>. CHROMATOGRAPHY (USP 37-NF 32 S1). , 6376-6385 (2014).
  16. Wong, G., Sime, F. B., Lipman, J., Roberts, J. A. How do we use therapeutic drug monitoring to improve outcomes from severe infections in critically ill patients?. BMC Infectious Diseases. 14, 288 (2014).
  17. . Cefepime hydrochloride: Highlights of prescribing information Available from: https://www.accessdata.fda.gov/drugsatfda_docs/Label/2016/050679s040lbl.pdf (2016)
  18. . Meropenem: Highlights of prescribing information Available from: https://www.accessdata.fda.gov/drugsatfda_docs/Label/2008/050706s022lbl.pdf (2006)
  19. . Ciprofloxacin hydrochloride: Highlights of prescribing information Available from: https://www.accessdata.fda.gov/drugsatfda_docs/Label/2016/019537s086lbl.pdf (2016)
  20. . Moxifloxacin hydrochloride: Highlights of prescribing information Available from: https://www.accessdata.fda.gov/drugsatfda_docs/Label/2010/021277s038lbl.pdf (2010)
  21. . Linezolid: Highlights of prescribing information Available from: https://www.accessdata.fda.gov/drugsatfda_docs/Label/2012/021130s028lbl.pdf (2011)
  22. . Piperacillin and Tazobactam: Highlighs of prescribing information Available from: https://www.accessdata.fda.gov/drugsatfda_docs/Label/2017/050684s88s89s90_050750s37s38s39lbl.pdf (2017)
  23. Zander, J., et al. Effects of biobanking conditions on six antibiotic substances in human serum assessed by a novel evaluation protocol. Clinical Chemistry and Laboratory. 54 (2), 265-274 (2016).
  24. Zander, J., et al. Quantification of piperacillin, tazobactam, cefepime, meropenem, ciprofloxacin and linezolid in serum using an isotope dilution UHPLC-MS/MS method with semi-automated sample preparation. Clinical Chemistry and Laboratory. 53 (5), 781-791 (2015).

Play Video

Citar este artigo
Schuster, C., Sterz, S., Teupser, D., Brügel, M., Vogeser, M., Paal, M. Multiplex Therapeutic Drug Monitoring by Isotope-dilution HPLC-MS/MS of Antibiotics in Critical Illnesses. J. Vis. Exp. (138), e58148, doi:10.3791/58148 (2018).

View Video