Summary

Forberedelse af akut rygmarven skiver til hele-celle Patch-klemme optagelse i Substantia Gelatinosa neuroner

Published: January 18, 2019
doi:

Summary

Her beskriver vi de væsentlige skridt for hele-celle patch-klemme optagelser foretaget fra substantia gelatinosa (SG) neuroner i rygmarven skive i vitro . Denne metode giver den iboende membran egenskaber, synaptisk transmission og morfologiske karakterisering af SG neuroner som skal undersøges.

Abstract

Nylige hele-celle patch-klemme undersøgelser fra substantia gelatinosa (SG) neuroner har givet et stort antal oplysninger om de underliggende sensoriske transmission, nociceptive regulering og kronisk smerte eller kløe udvikling spinal mekanismer. Implementeringer af elektrofysiologiske optagelser med morfologiske undersøgelser baseret på nytte af akut rygmarven skiver er yderligere forbedret vores forståelse af neuronal egenskaber og sammensætning af lokale kredsløb i SG. Vi præsenterer her, en detaljeret og praktisk vejledning til forberedelse af rygmarven skiver og Vis repræsentative hele-celle optagelse og morfologiske resultater. Denne protokol tillader ideelle neuronal bevarelse og kan efterligne i vivo betingelser til en vis grad. I Resumé, evnen til at opnå en in vitro- forberedelse af rygmarven skiver giver stabil strøm – og spænding-klemme optagelser og kunne dermed lette detaljerede undersøgelser af de iboende membran egenskaber, lokale kredsløb og neuronal struktur ved hjælp af forskellige eksperimentelle metoder.

Introduction

Substantia gelatinosa (SG, lamina II af spinal dorsal Hornet) er et ubestrideligt vigtigt relæ center for fremsendelse og regulering af sensorisk information. Det er sammensat af excitatoriske og hæmmende interneurons, der modtager input fra de primære afferente fibre, lokale interneurons og den endogene faldende hæmmende system1. I de seneste årtier, har udvikling af akut rygmarven skive forberedelse og fremkomsten af hele-celle patch-klemme optagelse aktiveret forskellige undersøgelser på de iboende elektrofysiologiske og morfologiske egenskaber af SG neuroner2, 3 , 4 samt undersøgelser af lokale kredsløb i SG5,6. Desuden ved hjælp af in vitro- rygmarven skive forberedelse, forskere kan fortolke ændringer i neuronal excitabilities7,8, funktionen af ion-kanaler9,10, og Synaptic aktiviteter11,12 forskellige patologiske betingelser. Disse undersøgelser har uddybet vores forståelse af den rolle, som generalsekretæren neuroner spille i udviklingen og vedligeholdelse af kroniske smerter og neuropatiske klør.

Det væsentlige, den vigtigste forudsætning for at opnå en klar visualisering af neuronal soma og ideelle hele-celle lappe ved hjælp af akut rygmarven skiver er at sikre den fremragende kvalitet af skiver så sunde og patchable neuroner kan opnås. Forberede rygmarven skiver indebærer imidlertid flere trin, som udfører en ventrale laminektomi og fjerne pia-arachnoid membran, der kan være forhindringer i at opnå sund skiver. Selv om det ikke er let at tilberede rygmarven skiver, har udfører optagelser i vitro på rygmarven skiver flere fordele. I forhold til celle kultur præparater, kan rygmarven skiver delvis bevare iboende synaptiske forbindelser, der er i en fysiologisk relevante tilstand. Derudover kunne hele-celle patch-klemme optagelse ved hjælp af rygmarven skiver kombineres med andre teknikker, såsom dobbelt patch klemme13,14, morfologiske undersøgelser15,16 og encellede RT-PCR 17. derfor, denne teknik giver flere oplysninger om kendetegner de anatomiske og genetiske forskelle inden for et bestemt område og giver mulighed for undersøgelse af sammensætningen af lokale kredsløb.

Her give vi et grundlæggende og detaljeret beskrivelse af vores metode til at forberede akut rygmarven skiver og erhverve hele-celle patch-klemme optagelser fra SG neuroner.

Protocol

Alle eksperimentelle protokoller er beskrevet blev godkendt af dyr etiske udvalg af Nanchang University (Nanchang, PR Kina, etisk No.2017-010). Alle bestræbelser var lavet til at minimere stress og jag i de eksperimentelle dyr. De elektrofysiologiske optagelser udføres her blev gennemført ved stuetemperatur (RT, 22-25 ° C). 1. dyr Bruge Sprague-Dawley rotter (3-5 uger gamle) af begge køn. Hus dyr under en 12t lys-mørke cyklus og give dem ad libitum adgang til tilstræk…

Representative Results

Akut rygmarven skiver var tilberedt efter diagrammet vist i figur 1. Efter udskæring og nyttiggørelse, blev en rygmarv skive overført til optagelse kammer. Sund neuroner blev identificeret baseret på soma udseende ved hjælp af IR-DIC mikroskopi. Næste, SG neuroner handling potentialer blev fremkaldt af en serie af depolariserende nuværende pulser (1 s varighed) da neuroner blev afholdt på RMP. Som vist i figur 2, affyring…

Discussion

Denne protokol detaljer trin for at forberede skiver, rygmarv, som vi har brugt med succes, når du udfører hele-celle patch-klemme eksperimenter på SG neuroner18,19,20,21. Ved at implementere denne metode, vi for nylig rapporteret, at minocycline, en anden generation af tetracyklin, kan markant forbedre hæmmende synaptisk transmission via en præsynaptiske mekanisme i SG neuroner<sup class=…

Declarações

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af tilskud fra den National Natural Science Foundation of China (nr. 81560198, 31660289).

Materials

NaCl Sigma S7653 Used for the preparation of ACSF and PBS
KCl Sigma 60130 Used for the preparation of ACSF, sucrose-ACSF, and K+-based intracellular solution
NaH2PO4·2H2O Sigma 71500 Used for the preparation of ACSF, sucrose-ACSF and PBS
CaCl2·2H2O Sigma C5080 Used for the preparation of ACSF and sucrose-ACSF
MgCl2·6H2O Sigma M2670 Used for the preparation of ACSF and sucrose-ACSF
NaHCO3 Sigma S5761 Used for the preparation of ACSF and sucrose-ACSF
D-Glucose Sigma G7021 Used for the preparation of ACSF
Ascorbic acid Sigma P5280 Used for the preparation of ACSF and sucrose-ACSF
Sodium pyruvate Sigma A7631 Used for the preparation of ACSF and sucrose-ACSF
Sucrose Sigma S7903 Used for the preparation of sucrose-ACSF
K-gluconate Wako 169-11835 Used for the preparation of K+-based intracellular solution
Na2-Phosphocreatine Sigma P1937 Used for the preparation of intracellular solution
EGTA Sigma E3889 Used for the preparation of intracellular solution
HEPES Sigma H4034 Used for the preparation of intracellular solution
Mg-ATP Sigma A9187 Used for the preparation of intracellular solution
Li-GTP Sigma G5884 Used for the preparation of intracellular solution
CsMeSO4 Sigma C1426 Used for the preparation of Cs+-based intracellular solution
CsCl Sigma C3011 Used for the preparation of Cs+-based intracellular solution
TEA-Cl Sigma T2265 Used for the preparation of Cs+-based intracellular solution
Neurobiotin 488 Vector SP-1145 0.05% neurobiotin 488 could be used for morphological studies
Agar Sigma A7002 3% agar block was used in our protocol
Paraformaldehyde Sigma P6148 4% paraformaldehyde was used for immunohistochemical processing
Na2HPO4 Hengxing Chemical Reagents Used for the preparation of PBS
Mount Coverslipping Medium Polyscience 18606
Urethan National Institute for Food and Drug Control 30191228 1.5 g/kg, i.p.
Borosilicate glass capillaries World Precision Instruments TW150F-4 1.5 mm OD, 1.12 mm ID
Micropipette puller Sutter Instrument P-97 Used for the preparation of micropipettes
Vibratome Leica VT1000S
Vibration isolation table Technical Manufacturing Corporation 63544
Infrared CCD camera Dage-MIT IR-1000
Patch-clamp amplifier HEKA EPC-10
Micromanipulator Sutter Instrument MP-285
X-Y stage Burleigh GIBRALTAR X-Y
Upright microscope Olympus BX51WI
Osmometer Advanced FISKE 210
PH meter Mettler Toledo FE20
Confocol microscope Zeiss LSM 700

Referências

  1. Todd, A. J. Neuronal circuitry for pain processing in the dorsal horn. Nature Reviews Neuroscience. 11 (12), 823-836 (2010).
  2. Yoshimura, M., Nishi, S. Blind patch-clamp recordings from substantia gelatinosa neurons in adult rat spinal cord slices: pharmacological properties of synaptic currents. Neurociência. 53 (2), 519-526 (1993).
  3. Maxwell, D. J., Belle, M. D., Cheunsuang, O., Stewart, A., Morris, R. Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn. The Journal of Physiology. 584 (Pt. 2, 521-533 (2007).
  4. Grudt, T. J., Perl, E. R. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. The Journal of Physiology. 540 (Pt 1), 189-207 (2002).
  5. Lu, Y., et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. Journal of Clinical Investigation. 123 (9), 4050-4062 (2013).
  6. Zheng, J., Lu, Y., Perl, E. R. Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents. The Journal of Physiology. 588 (Pt 12), 2065-2075 (2010).
  7. Balasubramanyan, S., Stemkowski, P. L., Stebbing, M. J., Smith, P. A. Sciatic chronic constriction injury produces cell-type-specific changes in the electrophysiological properties of rat substantia gelatinosa neurons. Journal of Neurophysiology. 96 (2), 579-590 (2006).
  8. Zhang, L., et al. Extracellular signal-regulated kinase (ERK) activation is required for itch sensation in the spinal cord. Molecular Brain. 7, 25 (2014).
  9. Kopach, O., et al. Inflammation alters trafficking of extrasynaptic AMPA receptors in tonically firing lamina II neurons of the rat spinal dorsal horn. Pain. 152 (4), 912-923 (2011).
  10. Takasu, K., Ono, H., Tanabe, M. Spinal hyperpolarization-activated cyclic nucleotide-gated cation channels at primary afferent terminals contribute to chronic pain. Pain. 151 (1), 87-96 (2010).
  11. Iura, A., Takahashi, A., Hakata, S., Mashimo, T., Fujino, Y. Reductions in tonic GABAergic current in substantia gelatinosa neurons and GABAA receptor delta subunit expression after chronic constriction injury of the sciatic nerve in mice. European Journal of Pain. 20 (10), 1678-1688 (2016).
  12. Alles, S. R., et al. Peripheral nerve injury increases contribution of L-type calcium channels to synaptic transmission in spinal lamina II: Role of alpha2delta-1 subunits. Molecular Pain. 14, 1-12 (2018).
  13. Santos, S. F., Rebelo, S., Derkach, V. A., Safronov, B. V. Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. The Journal of Physiology. 581 (Pt 1), 241-254 (2007).
  14. Lu, Y., Perl, E. R. Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). The Journal of Neuroscience. 25 (15), 3900-3907 (2005).
  15. Hantman, A. W., van den Pol, A. N., Perl, E. R. Morphological and physiological features of a set of spinal substantia gelatinosa neurons defined by green fluorescent protein expression. The Journal of Neuroscience. 24 (4), 836-842 (2004).
  16. Yasaka, T., Tiong, S. Y., Hughes, D. I., Riddell, J. S., Todd, A. J. Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain. 151 (2), 475-488 (2010).
  17. Yin, H., Park, S. A., Han, S. K., Park, S. J. Effects of 5-hydroxytryptamine on substantia gelatinosa neurons of the trigeminal subnucleus caudalis in immature mice. Brain Research. 1368, 91-101 (2011).
  18. Hu, T., et al. Lidocaine Inhibits HCN Currents in Rat Spinal Substantia Gelatinosa Neurons. Anesthesia and Analgesia. 122 (4), 1048-1059 (2016).
  19. Peng, H. Z., Ma, L. X., Lv, M. H., Hu, T., Liu, T. Minocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn. Neurociência. 319, 183-193 (2016).
  20. Peng, S. C., et al. Contribution of presynaptic HCN channels to excitatory inputs of spinal substantia gelatinosa neurons. Neurociência. 358, 146-157 (2017).
  21. Liu, N., Zhang, D., Zhu, M., Luo, S., Liu, T. Minocycline inhibits hyperpolarization-activated currents in rat substantia gelatinosa neurons. Neuropharmacology. 95, 110-120 (2015).
  22. Brown, T. H. Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brain slices from young and aging rats. Journal of Neuroscience Methods. 86 (1), 35-54 (1998).
  23. Rothman, S. M. The neurotoxicity of excitatory amino acids is produced by passive chloride influx. The Journal of Neuroscience. 5 (6), 1483-1489 (1985).
  24. Rice, M. E. Use of ascorbate in the preparation and maintenance of brain slices. Methods. 18 (2), 144-149 (1999).
  25. Takasu, K., Ogawa, K., Minami, K., Shinohara, S., Kato, A. Injury-specific functional alteration of N-type voltage-gated calcium channels in synaptic transmission of primary afferent C-fibers in the rat spinal superficial dorsal horn. European Journal of Pharmacology. 772, 11-21 (2016).
  26. Tian, L., et al. Excitatory synaptic transmission in the spinal substantia gelatinosa is under an inhibitory tone of endogenous adenosine. Neuroscience Letters. 477 (1), 28-32 (2010).
  27. Funai, Y., et al. Systemic dexmedetomidine augments inhibitory synaptic transmission in the superficial dorsal horn through activation of descending noradrenergic control: an in vivo patch-clamp analysis of analgesic mechanisms. Pain. 155 (3), 617-628 (2014).
  28. Yamasaki, H., Funai, Y., Funao, T., Mori, T., Nishikawa, K. Effects of tramadol on substantia gelatinosa neurons in the rat spinal cord: an in vivo patch-clamp analysis. PLoS One. 10 (5), e0125147 (2015).
  29. Furue, H., Narikawa, K., Kumamoto, E., Yoshimura, M. Responsiveness of rat substantia gelatinosa neurones to mechanical but not thermal stimuli revealed by in vivo patch-clamp recording. The Journal of Physiology. 521 (Pt 2), 529-535 (1999).
  30. Ting, J. T., Daigle, T. L., Chen, Q., Feng, G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods in Molecular Biology. 1183, 221-242 (2014).
  31. Ting, J. T., et al. Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method. Journal of Visualized Experiments. (132), e53825 (2018).
  32. Li, J., Baccei, M. L. Neonatal Tissue Damage Promotes Spike Timing-Dependent Synaptic Long-Term Potentiation in Adult Spinal Projection Neurons. The Journal of Neuroscience. 36 (19), 5405-5416 (2016).
  33. Ford, N. C., Ren, D., Baccei, M. L. NALCN channels enhance the intrinsic excitability of spinal projection neurons. Pain. , (2018).
  34. Cui, L., et al. Modulation of synaptic transmission from primary afferents to spinal substantia gelatinosa neurons by group III mGluRs in GAD65-EGFP transgenic mice. Journal of Neurophysiology. 105 (3), 1102-1111 (2011).
  35. Yang, K., Ma, R., Wang, Q., Jiang, P., Li, Y. Q. Optoactivation of parvalbumin neurons in the spinal dorsal horn evokes GABA release that is regulated by presynaptic GABAB receptors. Neuroscience Letters. , 55-59 (2015).

Play Video

Citar este artigo
Zhu, M., Zhang, D., Peng, S., Liu, N., Wu, J., Kuang, H., Liu, T. Preparation of Acute Spinal Cord Slices for Whole-cell Patch-clamp Recording in Substantia Gelatinosa Neurons. J. Vis. Exp. (143), e58479, doi:10.3791/58479 (2019).

View Video