Summary

单壁碳纳米管 (sscnt) (mallat1 反义寡 3号) 抑制多骨髓瘤细胞在体内的生长

Published: December 13, 2018
doi:

Summary

这篇手稿描述了单壁碳纳米管 (swcnt)-共轭 malat1 反义 gapgmer dna 寡核苷酸 (swcnt 反材料-malat1) 的合成, 这表明了 swcnt 的可靠交付和强大的治疗效果。抗马拉特1在体外和体内。介绍了用于 swcnt 抗 malat1 的合成、改性、共轭和注射的方法。

Abstract

单壁碳纳米管 (swcnt) 是一种新型的纳米粒子, 已被用于向细胞输送多种药物, 如蛋白质、寡核苷酸和合成小分子药物。swcnt 具有可定制的尺寸, 一个大的表面积, 并可以灵活地结合药物通过不同的修改, 在其表面;因此, 它是一个理想的系统, 运输药物到细胞。长非编码 rna (lnrna) 是一组时间超过200nt 的非编码 rna 群, 不能转化为蛋白质, 但在生物和病理生理过程中起着重要作用。转移性与肺腺癌相关的转录 1 (malat1) 是一种高度保守的 lncRNA。结果表明, 较高的 malat1 水平与各种癌症的预后不良有关, 包括多发性骨髓瘤 (mm)。我们发现, matr1 调节 dna 修复和细胞死亡在 mm;因此, matr1 可被视为 mm 的治疗靶点。然而, 反义寡核苷酸在体内有效传递给抑制-击倒 malat1 仍然是一个问题。在这项研究中, 我们修改了 swcnt 与 peg-2000, 并结合抗 mat1 寡核苷酸到它, 测试这种化合物的体外交付, 注入静脉注射 mm 小鼠模型, 并观察到一个显著的抑制 mm 进展, 这表明swcnt 是抗马拉特1口角 dna 的理想穿梭机。

Introduction

swcnt 是一种新型的纳米材料, 可提供各种类型的药物, 如蛋白质、小分子和核酸, 在体外 1和体内2具有理想的耐受性和最小毒性。功能化的 swcnt 具有很强的生物相容性和水溶性, 可作为小分子的穿梭点, 并可携带小分子穿透细胞膜 3,4,5.

lnrna 是一组 rna (gt;200 nt), 从基因组转录到 mrna, 但不能转化为蛋白质。越来越多的证据表明, ncrna 参与了基因表达调节 6, 并参与了大多数类型癌症的发生和发展, 包括 mm7,8,9。mallat1 是一种富核非编码记录 2 (neat2) 和高度保守的 lncRNA 10。mat1 最初被认为是转移性非小细胞肺癌 (nsclc)11, 但已在许多肿瘤5,12,13过度表达;它是 mm8,14中表达最严重的信息之一, 与预后差有关。与仅确诊为 mm 15 的患者相比, 致命病程外髓质 mm 患者的 malat1 表达水平明显高于.

在先前的一项研究中, 我们已经证实, 抗 mat1 寡核苷酸在 mm 16 中使用 gapmer dna 反义寡核苷酸靶向 mm1 (抗 amalat1) 强致 mm 16 中的 dna 损伤和凋亡。gapmer dna 由反义 dna 组成, 并由 2 ‘-ome-rna 连接, 这可能会促使 mirat1 通过 rnase h 活性一旦结合 17.反义寡核苷酸的体内传递效率仍然限制了其临床应用。

为了测试 swcnt 对抗 amalat1 变指寡核苷酸的传递效果, 将抗 malat1 报的 dna 与 dspe-peg2000-胺功能化的 cnt 结合。然后将 swcnt 抗 matrat1 静脉注射到 mm 扩散小鼠模型中;经过四种治疗后观察到明显的抑制。

Protocol

所有涉及动物的实验都是由克利夫兰诊所 iacuc (机构动物护理和使用委员会) 预先批准的。 1. 功能化 swcnt 的合成 将1毫克的 swcnt、5毫克的 dspe-peg2000 胺和5毫升的灭菌无核水混合在玻璃闪烁小瓶中 (20 毫升)。摇匀, 完全溶解所有试剂。 将小瓶放入水浴声纳中, 在室温下功率为 40 w, 1小时 (rt, 20分钟 x 3, 每20分钟更换一次水, 以避免过热)。然后, 以 24, 000 x g离心…

Representative Results

为了证明抗 amat1 gapmer dna 在 mm 中的抑制作用, 我们击倒了菌与高级101的表达, 并将其应用于 h929 和 mm. 1s 细胞中。48小时后, 收集细胞, 分析细胞的击倒效率和细胞凋亡状态转染抗 mallat1 口吃或控制 dna。qrt-pcr 结果表明, 抗 makat1 间隙酶 dna 有效地降低了 h929 和 mm. 1s 细胞中的 halat1 表达 (图 2a)。流式细胞仪测定细胞凋亡的状态, 显示下调节的 …

Discussion

有证据表明, ncrna 参与调节癌症的多种生理和病理生理程序, 包括 mm7,8,9;它们有可能成为癌症治疗的目标, 而反义寡核苷酸202122 可以实现。美国食品药品监督管理局 (fda) 已批准了几种反义寡核苷酸药物, 包括用于巨细胞病毒视网膜炎23的 fomivirsen、用于纯…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢勒纳研究所的蛋白质组学、基因组和成像核心的帮助和支持。资金: 这项工作得到了 NIH/NCI 赠款 r00 ca17292 (给 j. z.) 和启动资金 (jj. z.) 和凯斯西储备大学核心利用试点赠款 (j. z.) 临床和转化科学合作 (ctsc) 的财政支持。这项工作使用了 leica sp8 共聚焦显微镜, 该显微镜是在国家卫生研究院 sig 赠款1s10od01992-01 下购买的。

Materials

SWCNTs Millipore-Sigma 704113
DSPE-PEG2000-Amine Avanti Polar Lipids 880128
bath sonicator VWR 97043-992
4 mL centrifugal filter Millipore-Sigma Z740208-8EA
UV/VIS spectrometer Thermo Fisher Scientific accuSkan GO UV/Vis Microplate Spectrophotometer extinction coefficient of 0.0465 L/mg/cm at 808 nm
Sulfo-LC-SPDP ProteoChem c1118
DTT solution Millipore-Sigma 43815
NAP-5 column GE Healthcare 17-0853-01
in vivo imaging system PerkinElmer
NOD.CB17-Prkdcscid/J mice Charles River lab 250
Flow cytometer Becton Dickinso
Lipofectamine Invitrogen 11668019 Lipofectamine2000
Fetal bovine serum (FBS) Invitrogen 10437-028
RMPI-1640 medium Invitrogen 11875-093
MALAT1-QF: synthesized by IDT Company 5’- GTTCTGATCCCGCTGCTATT – 3’
MALAT1-QR: synthesized by IDT Company 5’- TCCTCAACACTCAGCCTTTATC – 3’
GAPDH-QF: synthesized by IDT Company 5’- CAAGAGCACAAGAGGAAGAGAG – 3’
GAPDH-QR: synthesized by IDT Company 5’- CTACATGGCAACTGTGAGGAG – 3’
Quantitative PCR using SYBR Green PCR master mix Thermo Fisher Scientific A25780
RevertAid first-stand cDNA synthesis kit Thermo Fisher Scientific K1621
anti-MALAT1 synthesized by IDT Company 5’-mC*mG*mA*mA*mA*C*A*T*T
*G*G*C*A*C*A*mC*mA*mG*mC*mA-3’
Cell Viability Assay Kit Promega Corporation G7570 CellTiter-GloLuminescent Cell Viability Assay Kit
accuSkan GO UV/Vis Microplate Spectrophotometer Thermo Fisher Scientific
centrifugal filter Millipore-Sigma UFC910008
SPSS software IBM version 24.0
D-Luciferin Millipore-Sigma L9504

Referências

  1. Jiang, X., et al. RNase non-sensitive and endocytosis independent siRNA delivery system: delivery of siRNA into tumor cells and high efficiency induction of apoptosis. Nanoscale. 5 (16), 7256-7264 (2013).
  2. Murakami, T., et al. Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomedicine (Lond). 3 (4), 453-463 (2008).
  3. Kam, N. W., Dai, H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. Journal of the American Chemical Society. 127 (16), 6021-6026 (2005).
  4. Kam, N. W., Liu, Z., Dai, H. Functionalization of carbon nanotubes via. cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. Journal of the American Chemical Society. 127 (36), 12492-12493 (2005).
  5. Kam, N. W., Liu, Z., Dai, H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angewandte Chemie International Edition in English. 45 (4), 577-581 (2006).
  6. Ntziachristos, P., Abdel-Wahab, O., Aifantis, I. Emerging concepts of epigenetic dysregulation in hematological malignancies. Nature Immunology. 17 (9), 1016-1024 (2016).
  7. Evans, J. R., Feng, F. Y., Chinnaiyan, A. M. The bright side of dark matter: lncRNAs in cancer. Journal of Clinical Investigation. 126 (8), 2775-2782 (2016).
  8. Ronchetti, D., et al. Distinct lncRNA transcriptional fingerprints characterize progressive stages of multiple myeloma. Oncotarget. 7 (12), 14814-14830 (2016).
  9. Wong, K. Y., et al. Epigenetic silencing of a long non-coding RNA KIAA0495 in multiple myeloma. Molecular Cancer. 14, 175 (2015).
  10. Schmidt, L. H., et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. Journal of Thoracic Oncology. 6 (12), 1984-1992 (2011).
  11. Ji, P., et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 22 (39), 8031-8041 (2003).
  12. Luo, J. H., et al. Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology. 44 (4), 1012-1024 (2006).
  13. Guffanti, A., et al. A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics. 10, 163 (2009).
  14. Cho, S. F., et al. MALAT1 long non-coding RNA is overexpressed in multiple myeloma and may serve as a marker to predict disease progression. BMC Cancer. 14, 809 (2014).
  15. Handa, H., et al. Long non-coding RNA MALAT1 is an inducible stress response gene associated with extramedullary spread and poor prognosis of multiple myeloma. British Journal of Haematology. 179 (3), 449-460 (2017).
  16. Hu, Y., et al. Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia. , (2018).
  17. Lennox, K. A., Behlke, M. A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Research. 44 (2), 863-877 (2016).
  18. Kam, N. W., O’Connell, M., Wisdom, J. A., Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences of the United States of America. 102 (33), 11600-11605 (2005).
  19. Zeineldin, R., Al-Haik, M., Hudson, L. G. Role of polyethylene glycol integrity in specific receptor targeting of carbon nanotubes to cancer cells. Nano Letters. 9 (2), 751-757 (2009).
  20. Amodio, N., D’Aquila, P., Passarino, G., Tassone, P., Bellizzi, D. Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert Opinion on Therapeutic Targets. 21 (1), 91-101 (2017).
  21. Ahmad, N., Haider, S., Jagannathan, S., Anaissie, E., Driscoll, J. J. MicroRNA theragnostics for the clinical management of multiple myeloma. Leukemia. 28 (4), 732-738 (2014).
  22. Amodio, N., et al. Drugging the lncRNA MALAT1 via. LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia. , (2018).
  23. Highleyman, L. FDA approves fomivirsen, famciclovir, and Thalidomide. Food and Drug Administration. BETA. 5, (1998).
  24. Smith, R. J., Hiatt, W. R. Two new drugs for homozygous familial hypercholesterolemia: managing benefits and risks in a rare disorder. JAMA Internal Medicine. 173 (16), 1491-1492 (2013).
  25. Aartsma-Rus, A. FDA Approval of Nusinersen for Spinal Muscular Atrophy Makes 2016 the Year of Splice Modulating Oligonucleotides. Nucleic Acid Therapeutics. 27 (2), 67-69 (2017).
  26. Nelson, S. F., Miceli, M. C. FDA Approval of Eteplirsen for Muscular Dystrophy. The Journal of the American Medical Association. 317 (14), 1480 (2017).
  27. Liu, Z., Sun, X., Nakayama-Ratchford, N., Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. American Chemical Society Nano. 1 (1), 50-56 (2007).
  28. Ali-Boucetta, H., et al. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chemical communications (Cambridge). (4), 459-461 (2008).
  29. Bianco, A., Kostarelos, K., Partidos, C. D., Prato, M. Biomedical applications of functionalised carbon nanotubes. Chemical communications. (5), 571-577 (2005).
  30. Hadidi, N., Kobarfard, F., Nafissi-Varcheh, N., Aboofazeli, R. Optimization of single-walled carbon nanotube solubility by noncovalent PEGylation using experimental design methods. International Journal of Nanomedicine. 6, 737-746 (2011).
  31. Padilla-Parra, S., et al. Quantitative imaging of endosome acidification and single retrovirus fusion with distinct pools of early endosomes. Proceedings of the National Academy of Sciences of the United States of America. 109 (43), 17627-17632 (2012).
  32. Wu, H., Zhu, L., Torchilin, V. P. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials. 34 (4), 1213-1222 (2013).
  33. Oishi, M., Nagatsugi, F., Sasaki, S., Nagasaki, Y., Kataoka, K. Smart polyion complex micelles for targeted intracellular delivery of PEGylated antisense oligonucleotides containing acid-labile linkages. Chembiochem. 6 (4), 718-725 (2005).
  34. Dong, H., Ding, L., Yan, F., Ji, H., Ju, H. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials. 32 (15), 3875-3882 (2011).
  35. Arunachalam, B., Phan, U. T., Geuze, H. J., Cresswell, P. Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proceedings of the National Academy of Sciences of the United States of America. 97 (2), 745-750 (2000).
  36. Lelimousin, M., Sansom, M. S. Membrane perturbation by carbon nanotube insertion: pathways to internalization. Small. 9 (21), 3639-3646 (2013).
  37. Thomas, M., Enciso, M., Hilder, T. A. Insertion mechanism and stability of boron nitride nanotubes in lipid bilayers. J Phys Chem B. 119 (15), 4929-4936 (2015).
  38. Jin, H., Heller, D. A., Strano, M. S. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Letters. 8 (6), 1577-1585 (2008).
  39. Jin, H., Heller, D. A., Sharma, R., Strano, M. S. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. American Chemical Society Nano. 3 (1), 149-158 (2009).
  40. Ruggiero, A., et al. Paradoxical glomerular filtration of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America. 107 (27), 12369-12374 (2010).

Play Video

Citar este artigo
Lin, J., Hu, Y., Zhao, J. Repression of Multiple Myeloma Cell Growth In Vivo by Single-wall Carbon Nanotube (SWCNT)-delivered MALAT1 Antisense Oligos. J. Vis. Exp. (142), e58598, doi:10.3791/58598 (2018).

View Video