Summary

Nanopartículas de óxido de ferro revestido de Polyethyleneimine como um veículo para a entrega de RNA de interferência pequeno para macrófagos In Vitro e In Vivo

Published: February 05, 2019
doi:

Summary

Nós descrevemos um método de usar polyethyleneimine (PEI)-revestido de nanopartículas de óxido de ferro superparamagnético para macrófagos transfecting com siRNA. Essas nanopartículas podem eficientemente entregar siRNA expressão macrófagos gene-alvo em vitro e in vivo e silêncio.

Abstract

Devido ao seu papel crítico na regulação da resposta imune, os macrófagos continuamente tenham sido objecto de intensa investigação e representam um alvo terapêutico promissor em muitas doenças, como doenças auto-imunes, aterosclerose e câncer. Silenciamento de genes mediada por RNAi é uma valiosa abordagem de escolha para investigar e manipular a função de macrófagos; no entanto, o transfeccao de macrófagos com siRNA é considerado frequentemente para ser tecnicamente desafiador, e, neste momento, algumas metodologias dedicadas para a transferência de siRNA para macrófagos estão disponíveis. Aqui, apresentamos um protocolo do uso de nanopartículas de óxido de ferro superparamagnético polyethyleneimine-revestido (PEI-SPIONs) como um veículo para a entrega de alvo de siRNA para macrófagos. PEI-SPIONs são capazes de vinculação e completamente condensação siRNA quando a relação de peso de Fe: siRNA atinge 4 e acima. In vitro, essas nanopartículas podem eficientemente entregar siRNA em macrófagos primários, bem como para a linha de celular de macrófagos, como 264.7 crus, sem comprometer viabilidade celular na dose ideal para transfeccao, e, em última análise, eles induzem silenciamento de genes mediada por siRNA alvo. Além de ser usado para em vitro transfeccao siRNA, PEI-SPIONs são também uma ferramenta promissora para a entrega de siRNA para macrófagos na vivo. Tendo em conta as suas características combinadas de propriedade magnética e silenciamento capacidade, sistemicamente administrado PEI-SPION/siRNA partículas são esperadas não só para modular a função de macrófagos, mas também para ativar macrófagos para ser fotografado e rastreado. Em essência, PEI-SPIONs representam uma plataforma nonviral simples, segura e eficaz para a entrega de siRNA para macrófagos tanto in vitro e in vivo.

Introduction

Os macrófagos são um tipo de células do sistema imune inatos distribuídos em todos os tecidos do corpo, embora em quantidades diferentes. Produzindo uma variedade de citocinas e outros mediadores, eles desempenham papéis críticos na defesa do hospedeiro contra patógenos microbianos a invadir, na reparação de tecidos após lesão e na manutenção da homeostase de tecido1. Devido à sua importância, os macrófagos continuamente tenham sido objecto de intensa investigação. No entanto, apesar de sua prevalência em estudos de função e regulação gênica, silenciamento de genes mediada por siRNA é menos susceptível de ter êxito em macrófagos, porque estas células — particularmente, macrófagos primários — são frequentemente difíceis de transfect. Isto pode ser atribuído a um grau relativamente elevado de toxicidade associado com abordagens de transfeccao mais bem estabelecidas que a membrana celular é quimicamente (por exemplo, com polímeros e lipídios) ou fisicamente (por exemplo, por eletroporação e armas de gene) interrompeu deixar siRNA moléculas atravessam a membrana, reduzindo assim drasticamente viabilidade de2,3 dos macrófagos. Além disso, os macrófagos são os fagócitos dedicados ricos em enzimas degradativos. Estas enzimas podem danificar a integridade do siRNA, enfraquecendo sua eficiência silencioso mesmo se siRNA gene-específico foi entregue para a célula3,4. Portanto, precisa de um sistema de entrega de siRNA macrófago-alvo eficaz proteger a integridade e a estabilidade de siRNA durante entrega4.

É cada vez mais evidente que macrófagos disfuncionais estão implicados na iniciação e progressão de certas desordens clínicas comuns como doenças auto-imunes, aterosclerose e câncer. Por este motivo, modulando a função do macrófago com, por exemplo, siRNA, tem sido a emergir como uma metodologia atraente para o tratamento destes transtornos5,6,7. Embora muito progresso tem sido feito, um grande desafio da estratégia de tratamento baseado em siRNA é a especificidade da célula pobre de siRNA sistemicamente administrado e a absorção de siRNA insuficiente pelos macrófagos, que, consequentemente, levar a efeitos colaterais indesejados. Comparado com terapêutica de ácido nucleico livre que geralmente carecem de seletividade de célula ideal e muitas vezes levam a efeitos adversos, carregado de drogas nanopartículas (NPs), devido à sua propensão espontânea de ser capturado pelo sistema reticuloendotelial, fora do alvo pode ser projetada para o direcionamento passiva de macrófagos na vivo, permitindo a maior eficácia terapêutica com efeitos colaterais mínimos8. Atual NPs explorado para a entrega de moléculas do RNA incluem nanocarriers inorgânicos e lipossomas diversos polímeros9. Entre eles, o polyethyleneimine (PEI), um tipo de polímeros cationic capazes de vinculação e condensação de ácidos nucleicos em NPs estabilizado, mostra o RNA maior fornecimento de capacidade9,10. PEI protege os ácidos nucleicos de degradação enzimática e nonenzymatic, Medeia sua transferência através da membrana celular e promove sua liberação intracelular. Embora inicialmente introduzido como um reagente de entrega de DNA, PEI foi posteriormente demonstrado ser uma plataforma atrativa para na vivo entrega siRNA, localmente ou sistemicamente9,10.

Nanopartículas de óxido de ferro superparamagnético (SPIONs) tem mostrado grande promessa na biomedicina, devido às suas propriedades magnéticas, biocompatibilidade, tamanho comparável aos objetos biologicamente importantes, alta proporção de superfície-área-volume e facilmente adaptável superfície para o bioagente anexo11. Por exemplo, por causa de sua utilidade potencial como um agente de contraste e rápida absorção por macrófagos, SPIONs surgiram como uma ferramenta clínica favorita para imagem de macrófagos de tecido12. Enquanto SPIONs também têm sido muito estudados como ácido nucleico entrega veículos11,13,14,15, nosso conhecimento, a literatura contém alguns relatos de SPIONs como um portador para entrega de siRNA macrófago-alvo. Para a entrega do gene por SPIONs, sua superfície geralmente é revestida com uma camada de polímeros cationic hidrofílicos na qual carregados negativamente ácidos nucleicos pode ser eletrostaticamente atraiu e amarrados. Aqui, apresentamos um método para a síntese de SPIONs cuja superfície é modificada com baixo peso molecular (10 kDa), ramificada PEI (PEI-SPIONs). Estes nanoplatforms magnéticos então são empregados para condensar siRNA, formando complexos de PEI-SPION/siRNA que permitem o transporte de siRNA para a célula. Nós razão aquela espontânea fagocitose de SPIONs pelas células do sistema reticuloendotelial16, juntamente com a forte capacidade de ligação e condensação de ácidos nucleicos por PEI, processa a PEI-SPIONs apropriado para o transporte eficiente de siRNA em macrófagos. Os dados apresentados aqui apoiar a viabilidade de silenciamento de genes PEI SPION/siRNA-mediada em macrófagos na cultura, bem como na vivo.

Protocol

Todos os métodos que envolvem animais vivos foram realizados em conformidade com o animal cuidado e usam as diretrizes da Universidade do sudeste, China. 1. preparação do PEI-SPIONs Preparação do ácido oleico-modificado SPIONs Dissolva FeCl3•6H2O e Filipa4•7H2O na água sob a proteção de N2. Adicione 28 g de FeCl3•6H2O e 20 g de Filipa4•7H2<…

Representative Results

O tamanho e a zeta potencial de PEI-SPIONs preparado com este protocolo foram na faixa de 29-48 nm (índice de polidispersividade: 0.12 – 0,23) e 30-48 mV, respectivamente. Eles estavam estáveis em água a 4 ° C por mais de 12 meses sem agregação óbvia. Para avaliar sua capacidade de vinculação de siRNA, PEI-SPIONs foram misturadas com siRNA em várias relações de peso de Fe: siRNA. A Figura 1 mostra que quando a relação de peso de Fe: siRNA atinge…

Discussion

Os macrófagos são refratários a transfect por abordagens nonviral comumente usadas, como espécie de lipídios, lipossomas catiônicos e eletroporação. Aqui nós descrevemos um método confiável e eficiente para transfect macrófagos com siRNA. Utilizando o presente protocolo, mais 90% dos macrófagos, como 264.7 pilhas (Figura 2B) e de macrófagos peritoneais de ratos18 pode ser transfected com siRNA sem deterioração significativa da viabilidade celular. Esse…

Declarações

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi financiado pelo programa de desenvolvimento da China (n. º 2017YFA0205502) e nacional chave de pesquisa e a Fundação Nacional de ciências naturais da China (81772308).

Materials

DMEM Gibco C11995500BT Warm in 37°C water bath before use
Fetal bovine serum Gibco A31608-02
Penicillin/streptomycin (1.5 ml) Gibco 15140122
Tetrazolium-based MTS assay kit Promega G3582 For cytotoxicity analysis
RAW 264.7 cell line Cell Bank of Chinese Academy of Sciences, Shanghai, China TCM13
Tissue culture plates (6-well) Corning 3516
Tissue culture dishes (10 cm) Corning 430167
RNase-free tubes (1.5 ml) AXYGEN MCT-150-C
Centrifuge tubes (15 ml) Corning 430791
Trypsin Gibco 25200-056
Wistar rats Shanghai Experimental Animal Center of Chinese
Academy of Sciences
Bacillus Calmette–Guérin freeze-dried powder National
Institutes for Food and Drug Control, China
for inducing adjuvant arthritis in rats
siRNA GenePharma (Shanghai, China)
Cy3-siRNA RiboBio (Guangzhou, China)
Polyethyleneimine (10 kDa) Aladdin Chemical Reagent Co., Ltd. E107079
Ammonia water Aladdin Chemical Reagent Co., Ltd. A112077
Oleic acid Aladdin Chemical Reagent Co., Ltd. O108484
Dimethylsulfoxide Aladdin Chemical Reagent Co., Ltd. D103272
FeSO4•7H2O Sinopharm Chemical Reagent Co., Ltd 10012118
FeCl3•6H2O Sinopharm Chemical Reagent Co., Ltd 10011918
Dimercaptosuccinic acid Aladdin Chemical Reagent Co., Ltd. D107254
ultrafiltration tube Millipore UFC910096
Tetramethylammonium hydroxide solution Aladdin Chemical Reagent Co., Ltd. T100882
Particle size and zeta potential analyzer Malvern, England Nano ZS90

Referências

  1. Murray, P. J., Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology. 11 (11), 723 (2011).
  2. Maeß, M. B., Wittig, B., Lorkowski, S. Highly efficient transfection of human THP-1 macrophages by nucleofection. Journal of Visualized Experiments. (91), e51960 (2014).
  3. Zhang, X., Edwards, J. P., Mosser, D. M. The Expression of Exogenous Genes in Macrophages: Obstacles and Opportunities. Macrophages and Dendritic Cells. , 123-143 (2009).
  4. Zhang, M., Gao, Y., Caja, K., Zhao, B., Kim, J. A. Non-viral nanoparticle delivers small interfering RNA to macrophages in vitro and in vivo. PLoS ONE. 10 (3), e0118472 (2015).
  5. Davignon, J. -. L., et al. Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology. 52 (4), 590-598 (2012).
  6. Brown, J. M., Recht, L., Strober, S. The promise of targeting macrophages in cancer therapy. Clinical Cancer Research. 23 (13), 3241-3250 (2017).
  7. Karunakaran, D., et al. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Science Advances. 2 (7), e1600224 (2016).
  8. Prosperi, D., Colombo, M., Zanoni, I., Granucci, F. Drug nanocarriers to treat autoimmunity and chronis inflammatory diseases. Seminars in Immunology. 34, 61-67 (2017).
  9. Höbel, S., Aigner, A. Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 5 (5), 484-501 (2013).
  10. Whitehead, K. A., Langer, R., Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nature Reviews Drug Discovery. 8 (2), 129 (2009).
  11. Liu, G., et al. N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. Small. 7 (19), 2742-2749 (2011).
  12. Weissleder, R., Nahrendorf, M., Pittet, M. J. Imaging macrophages with nanoparticles. Nature Materials. 13 (2), 125 (2014).
  13. Magro, M., et al. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection. Biochimica et Biophysica Acta (BBA)-General Subjects. 1861 (11), 2802-2810 (2017).
  14. Abdelrahman, M., et al. siRNA delivery system based on magnetic nanovectors: Characterization and stability evaluation. European Journal of Pharmaceutical Sciences. 106, 287-293 (2017).
  15. Zhang, H., Lee, M. -. Y., Hogg, M. G., Dordick, J. S., Sharfstein, S. T. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano. 4 (8), 4733-4743 (2010).
  16. Moghimi, S. M., Hunter, A. C., Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews. 53 (2), 283-318 (2001).
  17. Harvey, A. E., Smart, J. A., Amis, E. Simultaneous spectrophotometric determination of iron (II) and total iron with 1, 10-phenanthroline. Analytical Chemistry. 27 (1), 26-29 (1955).
  18. Duan, J., et al. Polyethyleneimine-functionalized iron oxide nanoparticles for systemic siRNA delivery in experimental arthritis. Nanomedicine. 9 (6), 789-801 (2014).
  19. Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine. 7, 5577 (2012).
  20. Wu, Y., et al. Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection. Nanotechnology. 22 (22), 225703 (2011).
  21. Xia, T., et al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano. 3 (10), 3273-3286 (2009).
  22. Mocellin, S., Provenzano, M. RNA interference: learning gene knock-down from cell physiology. Journal of Translational Medicine. 2 (1), 39 (2004).
  23. Courties, G., et al. et al.In vivo RNAi-mediated silencing of TAK1 decreases inflammatory Th1 and Th17 cells through targeting of myeloid cells. Blood. 116 (18), 3505-3516 (2010).
  24. Zolnik, B. S., Gonzalez-Fernandez, A., Sadrieh, N., Dobrovolskaia, M. A. Minireview: nanoparticles and the immune system. Endocrinology. 151 (2), 458-465 (2010).
  25. Mulens-Arias, V., Rojas, J. M., Pérez-Yagüe, S., Morales, M. P., Barber, D. F. Polyethylenimine-coated SPIONs trigger macrophage activation through TLR-4 signaling and ROS production and modulate podosome dynamics. Biomaterials. 52, 494-506 (2015).
check_url/pt/58660?article_type=t

Play Video

Citar este artigo
Jia, N., Wu, H., Duan, J., Wei, C., Wang, K., Zhang , Y., Mao, X. Polyethyleneimine-coated Iron Oxide Nanoparticles as a Vehicle for the Delivery of Small Interfering RNA to Macrophages In Vitro and In Vivo. J. Vis. Exp. (144), e58660, doi:10.3791/58660 (2019).

View Video