Summary

用于智能传感器制造的混合打印

Published: January 31, 2019
doi:

Summary

在这里, 我们提出了一个协议, 用于制造喷墨打印多层传感器结构的添加剂制造基板和箔。

Abstract

提出了一种将加法制造的基板或箔与多层喷墨打印相结合的方法, 用于传感器设备的制造。首先, 制备了三种基材 (丙烯酸酯、陶瓷和铜)。为了确定这些基板的材料特性, 进行了轮廓计、接触角、扫描电子显微镜 (sem) 和聚焦离子束 (fib) 测量。因此, 通过落差尺寸测试, 可以找到每个基材的可实现的打印分辨率和合适的落差体积。然后, 将绝缘油墨和导电油墨层交替喷墨打印, 以制造目标传感器结构。每次打印步骤完成后, 可通过光子固化对各层进行单独处理。根据印刷油墨以及相应基材的表面性能, 适用于每一层固化的参数。为了确定所产生的电导率并确定印刷表面的质量, 进行了四点探头和轮廓计测量。最后, 展示了这种全打印传感器系统的测量设置和结果, 以证明可实现的质量。

Introduction

添加剂制造 (am) 是标准化的一个过程, 其中材料连接, 以使对象从3d 模型数据。这通常是逐层完成的, 因此与半导体制造等减法制造技术形成鲜明对比。同义词包括3d 打印、添加剂制造、添加剂工艺、添加剂技术、添加剂层制造、层制造和自由成型制造。这些同义词是由美国测试和材料学会 (astm)1 的标准化复制的, 以提供一个独特的定义。在文献中, 3d 打印被称为打印对象的厚度在厘米到米 2范围内的过程。

更常见的工艺, 如立体平版印刷3, 可以打印聚合物, 但金属的3d 印刷也已在商业上可用。金属的 am 被应用于多个领域, 如汽车、航空航天4和医疗5个领域。航空航天结构的一个优势是可以通过简单的结构更改 (例如, 通过使用蜂窝设计) 打印较轻的设备。因此, 可以使用机械强度更大的材料, 否则会增加大量重量 (例如钛而不是铝)6

虽然聚合物的3d 打印已经很成熟, 但金属三维印刷仍然是一个充满活力的研究课题, 并为金属结构的三维印刷开发了各种工艺。基本上, 现有的方法可以组合成4组 7,8, 即1) 使用激光或电子束在一个线进过程中包覆, 2) 烧结系统使用激光或电子束, 3) 选择性熔融粉末使用激光或电子束 (粉末床融合) 和 4) 粘合剂喷射过程, 其中喷墨打印头通常在粉末基板上移动并分配粘结剂。

根据工艺的不同, 各自制造的样品将表现出不同的表面和结构特性7。在进一步努力使印刷部件功能化的过程中, 必须考虑这些不同的特性 (例如, 在其表面上制造传感器)。

与3d 打印不同的是, 实现这种功能化的打印过程 (例如, 屏幕和喷墨打印) 只覆盖有限的对象高度, 从小于 100 nm 9 到几个微米,因此, 通常也被称为2.5 d 打印. 或者, 还提出了基于激光的高分辨率图案解决方案10,11。由 ko12对纳米粒子的印刷工艺、热依赖性熔体温度及其应用进行了全面的综述。

尽管丝网印刷在文献1314 中得到了广泛的确立, 但喷墨打印提供了更好的升级能力, 同时提高了打印较小特征尺寸的分辨率。除此之外, 它是一种数字、非接触式打印方法, 可在三维上灵活沉积功能材料。因此, 我们的工作重点是喷墨打印。

喷墨打印技术已经应用于金属 (银、金、铂) 传感电极的制造。应用领域包括温度测量1516压力和应变传感171819和生物传感20、21以及气体或蒸汽分析22,23,24。这种印刷结构的固化在有限的高度延伸可以完成使用各种技术, 基于热25, 微波26, 电气 27, 激光28,和光子29的原则。

用于喷墨打印结构的光子固化使研究人员能够在具有低温电阻的基板上使用高能量、可固化的导电油墨。利用这种情况, 2.5 d 和3d 打印工艺的结合可用于在智能包装303132 和智能传感领域制造高度灵活的原型。

3d 打印金属基板的导电性是航空航天部门以及医疗部门所感兴趣的。它不仅提高了某些部件的机械稳定性, 而且有利于近场和电容传感。三维打印的金属外壳为传感器的前端提供了额外的屏蔽保护, 因为它可以电连接。

其目的是使用 am 技术制造设备。这些器件应在所使用的测量中提供足够高的分辨率 (通常在微观或纳米尺度上), 同时应满足可靠性和质量方面的高标准。

事实表明, am 技术为用户提供了足够的灵活性, 可以制造出优化的设计 33,34, 从而提高了整体测量质量。此外, 聚合物与单层喷墨打印的结合已在以往的研究第35,36,37,38中提出。

在这项工作中, 扩展了现有的研究, 并提供了一个关于 am 基板的物理性能, 重点是金属, 以及它们与多层喷墨打印和光子固化的兼容性的综述。补充图 1提供了一个典型的多层线圈设计。研究结果为 am 金属基板上多层传感器结构的喷墨打印提供了策略。

Protocol

注意: 在使用经过深思熟虑的油墨和粘合剂之前, 请参考相关的材料安全数据表 (msds)。所使用的纳米颗粒油墨和粘合剂可能有毒或致癌, 取决于填料。在进行喷墨打印或样品制备时, 请使用所有适当的安全实践, 并确保佩戴适当的个人防护设备 (安全眼镜、手套、实验室外套、全长裤子、闭脚鞋)。 注: 除步骤 6.3-6.6 和步骤 9.2-9.5 之外, 任何步骤后都可以暂停该协议。 <p class="jo…

Representative Results

从图 1所示的扫描电镜图像中, 可以得出有关各个基板上的可打印性的结论。由于表面粗糙度的不同范围, 刻度条是不同的。在图1a 中, 显示了铜基板的表面, 这是迄今为止最平滑的。另一方面, 图 1c显示了由于孔隙率高和接触角不稳定而无法使用喷墨打印的钢基板 (另见表 2)。在…

Discussion

演示了一种在三维印刷基板和铝箔上制造多层传感器结构的方法。am 金属以及陶瓷和丙烯酸酯型和箔基板被证明适用于多层喷墨打印, 因为基板与不同层之间的附着力是足够的, 以及各自的导电性或绝缘能力。这可以通过在绝缘材料上印刷导电结构的层来显示。此外, 所有层的打印和固化过程都成功地执行了, 而不会相互损害。

本研究提出的制造策略对不同材料和表面性能的相…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 comet k1 总成奥地利智能系统集成研究中心的支持。comet 优秀技术能力中心 (该计划) 由 bmvit、bmwfw 以及联邦卡林西亚省和施蒂里亚省提供支持。

Materials

PiXDRO LP 50 Meyer Burger AG Inkjet-Printer with dual-head assembly.
SM-128 Spectra S-class Fujifilm Dimatix Printheads with nozzle diameter of 50 µm, 50 pL calibrated dropsize and 800 dpi maximum resolution.
DMC-11610/DMC-11601 Fujifilm Dimatix Disposable printheads with nozzle diameter 21.5 µm, 1 or 10 pL calibrated dropsize
Sycris I50DM-119 PV Nanocell Conductive silver nanoparticle ink with 50 wt.% silver loading, with an average particle size of 120 nm, in triethylene glycol monomethyl ether.
Solsys EMD6200 SunChemical Insulating, low-k dielectric ink which is a mixture of acrylate-type monomers. Viscosity is 7-9 cps.
Dycotec DM-IN-7002-I Dycotec UV curable insulator, Surface Tension: 37.4 mN/m
Dycotec DM-IN-7003C-I Dycotec UV curable insulator, Surface Tension: 29.7 mN/m
Dycotec DM-IN-7003-I Dycotec UV curable insulator, Surface Tension: 31.4 mN/m
Dycotec DM-IN-7004-I Dycotec UV curable insulator, Surface Tension: 27.9 mN/m
Pulseforge 1200 Novacentrix Photonic curing/sintering equipment.
DektatkXT Bruker Stylus Profiler with stylus tip of 12.5 µm diameter and constant force of 4 mg.
C4S Cascade Microtech Four-point-probe measurement head.
2000 Keithley Multimeter to evaluate the measurements using the four-point-probe.
Helios NanoLab600i FEI Focused Ion Beam analysis station which provides high-energy gallium ion milling.
SeeSystem Advex Instruments Water contact angle measurement device.
Projet 3500 HDMax 3D Systems Professional high-resolution polymer 3D-printer. See also (accessed Sep. 2018): https://www.3dsystems.com/sites/default/files/projet_3500_plastic_0115_usen_web.pdf
Polytec PU 1000 Polytec PT Electrically conductive adhesive based on Polyurethane, available
Microdispenser Musashi Needle for microdispensing.
Micro-assembly station Finetech Equipment for assembly of, e.g., printed circuit boards (PCBs) and placing of chemicals (e.g. solder) and SMD parts.

Referências

  1. . Standards Worldwide Available from: https://www.astm.org/ (2012)
  2. Morris, M., et al. Mars Ice House: Using the Physics of Phase Change in 3D Printing a Habitat with H2O. AIAA SPACE Forum. , (2016).
  3. Jacobs, P. F. Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography. Society of Manufacturing Engineers. , (1992).
  4. Kief, C. J., et al. Printing Multi-Functionality: Additive Manufacturing for CubeSats. AIAA SPACE Forum. , (2014).
  5. Sing, S. L., An, J., Yeong, W. Y., Wiria, F. E. Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs. Journal of Orthopedic Research. 34 (3), 369-385 (2016).
  6. Garcia-Corso, M., Gonzalez, J. M., Vermeulen, J., Rossmann, C., Kranz, J. Additive Manufacturing Hot Bonded Inserts in Sandwich Structures. European Conference on Spacecraft Structures, Materials and Environmental Testing. , (2016).
  7. Murr, L. E., Johnson, W. L. 3D metal droplet printing development and advanced materials additive manufacturing. Journal of Materials Research and Technology. 6 (1), 77-89 (2017).
  8. Stavropoulos, P., Foteinopoulos, P. Modelling of additive manufacturing processes: a review and classification. Manufacturing Review. 5 (2), (2018).
  9. Le, D. D., Nguyen, T. N. N., Doan, D. C. T., Dang, T. M. D., Dang, M. C. Fabrication of interdigitated electrodes by inkjet printing technology for apllication in ammonia sensing. Advances in Natural Sciences: Nanoscience and Nanotechnology. 7 (2), 1-7 (2016).
  10. Hong, S., Lee, H., Yeo, J., Hwan Ko, ., S, Digital selective laser methods for nanomaterials: From synthesis to processing. Nano Today. 11, 547-564 (2016).
  11. Pan, H., et al. High-Troughput Near-Field Optical Nanoprocessing of Solution-Deposited Nanoparticles. Small. 6 (16), 1812-1821 (2010).
  12. Ko, H. S. Low temperature thermal engineering of nanoparticle ink for flexible electronics applications. Semiconductor Science and Technology. 31, (2016).
  13. Mattana, G., Briand, D. Recent Advances in Printed Sensors on Foil. Materials Today. 19 (2), 88-99 (2016).
  14. Sekine, T., et al. Fully Printed Wearable Vital Sensor for Human Pulse Rate Monitoring using Ferroelectric Polymer. Scientific Reports. 8, (2018).
  15. Molina-Lopez, F., Vásquez Quintero, A., Mattana, G., Briand, D., de Rooij, F. N. Large-Area Compatible Fabrication and Encaplsulation of Inkjet-Printed Humidity Sensors on Flexible Foils with Integrated Thermal Compensation. Journal of Micromechanics and Microengineering. 23 (2), (2013).
  16. Aliane, A., et al. Enhanced Printed Temperature Sensors on Flexible Substrates. Microelectronics Journal. 45 (12), 1612-1620 (2014).
  17. Narakathu, B. B., et al. A novel fully printed and flexible capacitive pressure sensor. IEEE Sensors. , (2012).
  18. Zirkl, M., et al. PyzoFlex: a printed piezoelectric pressure sensing foil for human machine interfaces. Proceedings Volume 8831, Organic Field-Effect Transistors XII; and Organic Semiconductors in Sensors and Bioelectronics VI. SPIE Organic Photonics + Electronics. , (2013).
  19. Manunza, I., Sulis, A., Bonfiglio, A. Pressure Sensing by Flexible, Organic, Field Effect Transistors. Applied Phyics Letters. 89 (14), (2006).
  20. Jensen, G. C., Krause, C. E., Sotzing, G. A., Rusling, J. F. Inkjet-Printed Gold Nanoparticle Electrochemical Arrays on Plastic. Application to Immunodetection of a Cancer Biomarker Protein. Physical Chemistry Chemical Physics. 13 (11), 4888-4894 (2011).
  21. Lesch, A., et al. Large Scale Inkjet-Printing of Carbon Nanotubes Electrodes for Antioxidant Assays in Blood Bags. Journal of Electroanalytical Chemistry. 717, 61-68 (2014).
  22. Sarfraz, J., et al. A Printed H2S Sensor with Electro-Optical Response. Sensors and Actuators B: Chemical. 191, 821-827 (2014).
  23. Sarfraz, J., et al. Printed Copper Acetate Based H2S Sensor on Paper Substrate. Sensors and Actuators B: Chemical. 173, 868-873 (2012).
  24. Huang, L., et al. A Novel Paper-Based Flexible Ammonia Gas Sensor via Silver and SWNT-PABS Inkjet Printing. SWNT-PABS Inkjet Printing. Sensors and Actuators B: Chemical. 197, 308-313 (2014).
  25. Kamyshny, A., Steinke, J., Magdassi, S. Metal-based inkjet inks for printed electronics. Open Applied Physics Journal. 4, 19-36 (2011).
  26. Perelaer, J., de Gans, B. J., Schubert, U. S. Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks. Advanced Materials. 18, 2101-2104 (2006).
  27. Hummelgard, M., Zhang, R., Nilsson, H. -. E., Olin, H. Electrical sintering of silver nanoparticle ink studied by in situ TEM probing. PLoS One. 6, (2011).
  28. Kumpulainen, T., et al. Low temperature nanoparticle sintering with continuous wave and pulse lasers. Optics and Laser Technology. 43, 570-576 (2011).
  29. Schröder, K., McCool, S., Furlan, W. Broadcast Photonic Curing of Metallic Nanoparticle Films. Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show. 3, 198-201 (2006).
  30. Lopes, A. J., Lee, I. H., MacDonald, E., Quintana, R., Wicker, R. Laser Curing of Silver-Based Conductive Inks for In-Situ 3D Structural Electronics Fabrication in Stereolithography. Journal Materials Processing Technology. 214 (9), 1935-1945 (2014).
  31. Faller, L. -. M., Mitterer, T., Leitzke, J. P., Zangl, H. Design and Evaluation of a Fast, High-Resolution Sensor Evaluation Platform Applied to MEMS Position Sensing. IEEE Transactions on Instrumentation and Measurement. 67 (5), 1014-1027 (2018).
  32. Faller, L. -. M., Zangl, H. Feasibility Considerations on an Inkjet-Printed Capacitive Position Sensor for Electrostatically Actuated Resonant MEMS-Mirror Systems. Journal of Microelectromechanical Systems. 26 (3), 559-568 (2017).
  33. Faller, L. -. M., Zangl, H. Robust design of an inkjet-printed capacitive sensor for position tracking of a MOEMS-mirror in a Michelson interferometer setup. Proceedings of SPIE 10246, Smart Sensors, Actuators, and MEMS VIII. , (2017).
  34. Faller, L. -. M., Zangl, H. Robust design of a 3D- and inkjet-printed capacitive force/pressure sensor. 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). , (2016).
  35. Wang, P. -. C., et al. The inkjet printing of catalyst Pd ink for selective metallization apply to product antenna on PC/ABS substrate. 2013 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). , (2013).
  36. Quintero, A. V., et al. Printing and encapsulation of electrical conductors on polylactic acid (PLA) for sensing applications. 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). , (2014).
  37. Unnikrishnan, D., Kaddour, D., Tedjini, S., Bihar, E., Saadaoui, M. CPW-Fed Inkjet Printed UWB Antenna on ABS-PC for Integration in Molded Interconnect Devices Technology. IEEE Antennas and Wireless Propagation Letters. 14, 1125-1128 (2015).
  38. . Lost Wax Printing & Casting Available from: https://i.materialise.com/en/3d-printing-technologies/lost-wax-printing-casting (2018)
  39. Faller, L. -. M., Krivec, M., Abram, A., Zangl, H. AM Metal Substrates for Inkjet-Printing of Smart Devices. Materials Characterization. , (2018).
  40. Hutchings, I. M., Martin, G. D., Hutchings, I. M., Martin, G. D. Introduction to Inkjet Printing for Manufacturing. Inkjet Technology for Digital Fabrication. , 1-20 (2013).
  41. Baek, M. I., Hong, M., Korvink, J. G., Smith, P. J., Shin, D. -. Y. Equalization of Jetting Performance. Inkjet-Based Micromanufacturing. , 159-172 (2012).
  42. Zhang, T. . Methods for Fabricating Printed Electronics with High Conductivity and High Resolution. , (2014).
  43. Suganuma, K. . Introduction to Printed Electronics. , (2014).
  44. Baxter, L. K. . Capacitive Sensors: Design and Applications. , (1997).

Play Video

Citar este artigo
Faller, L., Zikulnig, J., Krivec, M., Roshanghias, A., Abram, A., Zangl, H. Hybrid Printing for the Fabrication of Smart Sensors. J. Vis. Exp. (143), e58677, doi:10.3791/58677 (2019).

View Video