Summary

Использование Microarrays для допроса микроenvironmentale влияние на клеточные фенотипы при раке

Published: May 21, 2019
doi:

Summary

Цель метода, представленного здесь, состоит в том, чтобы показать, как микроокружение microarrays (MEMA) могут быть изготовлены и использованы для допроса воздействия тысяч простых комбинаторных микросред на фенотип культивированных клеток.

Abstract

Понимание влияния микроокружения на фенотип клеток является сложной проблемой из-за сложной смеси как растворимых факторов роста, так и матричных белков в микроокружении in vivo. Кроме того, легкодоступные реагенты для моделирования микросред в пробирке обычно используют сложные смеси белков, которые не полностью определены и страдают от пакетной к пакетной изменчивости. Платформа микроокружения microarray (MEMA) позволяет оценить тысячи простых комбинаций белков микросреды для их воздействия на клеточные фенотипы в одном анализе. MEMAs готовятся в колодцах, что позволяет добавление отдельных лигандов отделять скважины, содержащие массивные внеклеточные матричные белки (ECM). Сочетание растворимого лиганда с каждым печатным ECM образует уникальное сочетание. Типичный анализ MEMA содержит более 2500 уникальных комбинаторных микросред, что клетки подвергаются в одном анализе. В качестве тестового случая, линия клеток рака молочной железы MCF7 была покрыта на платформе MEMA. Анализ этого анализа выявил факторы, которые как усиливают и препятствуют росту и распространению этих клеток. Платформа MEMA является очень гибкой и может быть расширена для использования с другими биологическими вопросами, помимо исследований рака.

Introduction

Культирование раковых клеток линий на пластике в двумерных (2D) монослой остается одним из основных рабочих лошадок для исследователей рака. Тем не менее, микросреда все больше признается за его способность влиять на клеточные фенотипы. При раке, микроокружение опухоли, как известно, влияет на несколько клеточного поведения, в том числе рост, выживание, вторжение, и ответ на терапию1,2. Традиционные монослойные клеточные культуры, как правило, не имеют влияния микроэкологии, что привело к разработке более сложных трехмерных (3D) анализов для выращивания клеток, в ключая коммерчески доступные очищенные экстракты мембраны подвала. Тем не менее, эти очищенные матрицы, как правило, сложны в использовании и страдают от технических проблем, таких как вариабельность пакетов3 и сложные композиции3. В результате, это может быть трудно назначить функцию конкретных белков, которые могут влиять на клеточные фенотипы3.

Для устранения этих ограничений мы разработали технологию микроокружения microarray (MEMA), которая сводит микроокружение к простым сочетаниям внеклеточной матрицы (ECM) и растворимых белков фактора роста4,5 . Платформа MEMA позволяет выявлять доминирующие микроэкологические факторы, влияющие на поведение клеток. Используя формат массива, тысячи комбинаций факторов микросреды могут быть рассмотрены в одном эксперименте. MEMA описал здесь допрашивает 2500 различных уникальных условий микросреды. Белки ECM, напечатанные в хорошо пластины образуют рост колодки, на которых клетки могут быть культивированы. Растворимые лиганды добавляются в отдельные скважины, создавая уникальные комбинаторные микросреды (ECM и ligand) на каждом различном месте, к которому подвергаются клетки. Клетки культивируются в течение нескольких дней, затем фиксируются, окрашиваются и образуются для оценки клеточных фенотипов в результате воздействия этих специфических комбинаций микросреды. Поскольку микросреда представляет собой простые комбинации, легко определить белки, которые управляют основными фенотипическими изменениями в клетках. MEMAs были успешно использованы для выявления факторов, которые влияют на несколько клеточных фенотипов, в том числе те, которые управляют решениями судьбы клеток и ответ на терапию4,5,6,7. Эти ответы могут быть проверены в простых 2D-экспериментов, а затем могут быть оценены в условиях, которые более полно резюмировать сложность микросреды опухоли. Платформа MEMA хорошо адаптируется к различным типам клеток и конечным точкам, при условии, что имеются хорошие фенотипические биомаркеры.

Protocol

ПРИМЕЧАНИЕ: Обзор всего процесса MEMA, включая расчетное время, изложен на диаграмме потока, показанной на рисунке 1. В этом протоколе подробно описано изготовление MEMA в 8-колодцах. Протокол может быть адаптирован для других пластин или слайдов. 1. Под…

Representative Results

Для упрощения воздействия микроenvironmentalов на рост и пролиферацию клеток и выявления условий, способствующих или препятствуя росту и пролиферации клеток, линия клеток рака молочной железы MCF7 была посеяна на комплекте из восьми 8-ну хорошо MEMAs, как описано в протоколе. Этот анализ подверга…

Discussion

Важность “мерности” и контекста был мотивирующее фактор в развитии систем культуры in vitro в качестве инструментов в характеристике раковых клеток через их взаимодействие с микросредой11, и способность in vitro культурные системы для имитации среды in vivo является движущей силой с…

Declarações

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана NIH Общий фонд Библиотека сетевых сотовых подписей (LINCS) грант HG008100 (J.W.G., L.M.H., и J.E.K.).

Materials

Aushon 2470 Aushon BioSystems Arrayer robot system used in the protocol
Nikon HCA Nikon High Content Imaging system designed around Nikon Eclipse Ti Inverted Microscope
BioTek Precision XS liquid Handler BioTek liquid handling robot used in the protocol
Trizma hydrochloride buffer solution Sigma T2069
EDTA Invitrogen 15575-038
Glycerol Sigma G5516
Triton X100 Sigma T9284
Tween 20 Sigma P7949
Kolliphor P338 BASF 50424591
384-well microarray plate, cylindrical well Thermo Fisher ab1055
Nunc 8 well dish Thermo Fisher 267062
Paraformaldehyde 16% solution Electron Microscopy Science 15710
BSA Fisher BP-1600
Sodium Azide Sigma S2002
Cell Mask Molecular Probes H32713
Click-iTEdU Alexa Fluor Molecular Probes C10357
DAPI Promo Kine PK-CA70740043
ALCAM R & D Systems 656-AL ECM
Cadherin-20 (CDH20) R & D Systems 5604-CA ECM
Cadherin-6 (CDH6) R & D Systems 2715-CA ECM
Cadherin-8 (CDH8) R & D Systems 188-C8 ECM
CD44 R & D Systems 3660-CD ECM
CEACAM6 R & D Systems 3934-CM ECM
Collagen I Cultrex 3442-050-01 ECM
Collagen Type II Millipore CC052 ECM
Collagen Type III Millipore CC054 ECM
Collagen Type IV Sigma C5533 ECM
Collagen Type V Millipore CC077 ECM
COL23A1 R & D Systems 4165-CL ECM
Desmoglein 2 R & D Systems 947-DM ECM
E-cadherin (CDH1) R & D Systems 648-EC ECM
ECM1 R & D Systems 3937-EC ECM
Fibronectin R & D Systems 1918-FN ECM
GAP43 Abcam ab114188 ECM
HyA-500K R & D Systems GLR002 ECM
HyA-50K R & D Systems GLR001 ECM
ICAM-1 R & D Systems 720-IC ECM
Laminin Sigma L6274 ECM
Laminin-5 Abcam ab42326 ECM
Lumican R & D Systems 2846-LU ECM
M-Cad (CDH15) R & D Systems 4096-MC ECM
Nidogen-1 R & D Systems 2570-ND ECM
Osteoadherin/OSAD R & D Systems 2884-AD ECM
Osteopontin (SPP) R & D Systems 1433-OP ECM
P-Cadherin (CDH3) R & D Systems 861-PC ECM
PECAM1 R & D Systems ADP6 ECM
Tenascin C R & D Systems 3358-TC ECM
VCAM1 R & D Systems ADP5 ECM
vitronectin R & D Systems 2308-VN ECM
Biglycan R & D Systems 2667-CM ECM
Decorin R & D Systems 143-DE ECM
Periostin R & D Systems 3548-F2 ECM
SPARC/osteonectin R & D Systems 941-SP ECM
Thrombospondin-1/2 R & D Systems 3074-TH ECM
Brevican R & D Systems 4009-BC ECM
Elastin BioMatrix 5052 ECM
Fibrillin Lynn Sakai Lab OHSU N/A ECM
ANGPT2 RnD_Systems_Own 623-AN-025 Ligand
IL1B RnD_Systems_Own 201-LB-005 Ligand
CXCL8 RnD_Systems_Own 208-IL-010 Ligand
IGF1 RnD_Systems_Own 291-G1-200 Ligand
TNFRSF11B RnD_Systems_Own 185-OS Ligand
BMP6 RnD_Systems_Own 507-BP-020 Ligand
FLT3LG RnD_Systems_Own 308-FK-005 Ligand
CXCL1 RnD_Systems_Own 275-GR-010 Ligand
DLL4 RnD_Systems_Own 1506-D4-050 Ligand
HGF RnD_Systems_Own 294-HGN-005 Ligand
Wnt5a RnD_Systems_Own 645-WN-010 Ligand
CTGF Life_Technologies_Own PHG0286 Ligand
LEP RnD_Systems_Own 398-LP-01M Ligand
FGF2 Sigma_Aldrich_Own SRP4037-50UG Ligand
FGF6 RnD_Systems_Own 238-F6 Ligand
IL7 RnD_Systems_Own 207-IL-005 Ligand
TGFB1 RnD_Systems_Own 246-LP-025 Ligand
PDGFB RnD_Systems_Own 220-BB-010 Ligand
WNT10A Genemed_Own 90009 Ligand
PTN RnD_Systems_Own 252-PL-050 Ligand
BMP3 RnD_Systems_Own 113-BP-100 Ligand
BMP4 RnD_Systems_Own 314-BP-010 Ligand
TNFSF11 RnD_Systems_Own 390-TN-010 Ligand
CSF2 RnD_Systems_Own 215-GM-010 Ligand
BMP5 RnD_Systems_Own 615-BMC-020 Ligand
DLL1 RnD_Systems_Own 1818-DL-050 Ligand
NRG1 RnD_Systems_Own 296-HR-050 Ligand
KNG1 RnD_Systems_Own 1569-PI-010 Ligand
GPNMB RnD_Systems_Own 2550-AC-050 Ligand
CXCL12 RnD_Systems_Own 350-NS-010 Ligand
IL15 RnD_Systems_Own 247-ILB-005 Ligand
TNF RnD_Systems_Own 210-TA-020 Ligand
IGFBP3 RnD_Systems_Own 675-B3-025 Ligand
WNT3A RnD_Systems_Own 5036-WNP-010 Ligand
PDGFAB RnD_Systems_Own 222-AB Ligand
AREG RnD_Systems_Own 262-AR-100 Ligand
JAG1 RnD_Systems_Own 1277-JG-050 Ligand
BMP7 RnD_Systems_Own 354-BP-010 Ligand
TGFB2 RnD_Systems_Own 302-B2-010 Ligand
VEGFA RnD_Systems_Own 293-VE-010 Ligand
IL6 RnD_Systems_Own 206-IL-010 Ligand
CXCL12 RnD_Systems_Own 351-FS-010 Ligand
NRG1 RnD_Systems_Own 378-SM Ligand
IGFBP2 RnD_Systems_Own 674-B2-025 Ligand
SHH RnD_Systems_Own 1314-SH-025 Ligand
FASLG RnD_Systems_Own 126-FL-010 Ligand

Referências

  1. Hanahan, D., Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 21 (3), 309-322 (2012).
  2. Quail, D. F., Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine. 19 (11), 1423-1437 (2013).
  3. Hughes, C. S., Postovit, L. M., Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 10 (9), 1886-1890 (2010).
  4. LaBarge, M. A., et al. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integrative Biology (Cambridge). 1 (1), 70-79 (2009).
  5. Watson, S. S., et al. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Systems. 6 (3), 329-342 (2018).
  6. Ranga, A., et al. 3D niche microarrays for systems-level analyses of cell fate. Nature Communications. 5, 4324 (2014).
  7. Malta, D. F. B., et al. Extracellular matrix microarrays to study inductive signaling for endoderm specification. Acta Biomater. 34, 30-40 (2016).
  8. Kamentsky, L., et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics. 27 (8), 1179-1180 (2011).
  9. Gagnon-Bartsch, J. A., Jacob, L., Speed, T. P. Removing Unwanted Variation from High Dimensional Data with Negative Controls. University of California, Berkeley, Department of Statistics, University of California, Berkeley. , (2013).
  10. Allan, C., et al. OMERO: flexible, model-driven data management for experimental biology. Nature Methods. 9 (3), 245-253 (2012).
  11. Simian, M., Bissell, M. J. Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology. 216 (1), 31-40 (2017).
  12. Bissell, M. J. The differentiated state of normal and malignant cells or how to define a “normal” cell in culture. International Review of Cytology. 70, 27-100 (1981).
  13. Serban, M. A., Prestwich, G. D. Modular extracellular matrices: solutions for the puzzle. Methods. 45 (1), 93-98 (2008).
  14. Kaylan, K. B., et al. Mapping lung tumor cell drug responses as a function of matrix context and genotype using cell microarrays. Integrative Biology (Cambridge). 8 (12), 1221-1231 (2016).
  15. Lin, C. H., Jokela, T., Gray, J., LaBarge, M. A. Combinatorial Microenvironments Impose a Continuum of Cellular Responses to a Single Pathway-Targeted Anti-cancer Compound. Cell Reports. 21 (2), 533-545 (2017).
  16. Gjorevski, N., et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 539 (7630), 560-564 (2016).

Play Video

Citar este artigo
Smith, R., Devlin, K., Kilburn, D., Gross, S., Sudar, D., Bucher, E., Nederlof, M., Dane, M., Gray, J. W., Heiser, L., Korkola, J. E. Using Microarrays to Interrogate Microenvironmental Impact on Cellular Phenotypes in Cancer. J. Vis. Exp. (147), e58957, doi:10.3791/58957 (2019).

View Video