Summary

Preparación de hongos y materiales vegetales para la elucidación estructural mediante RMN de estado sólido de polarización Nuclear dinámica

Published: February 12, 2019
doi:

Summary

Se presenta un protocolo para preparar 13C,15marcado con N muestras de hongos y plantas para espectroscopia de RMN de estado sólida multidimensional y las investigaciones de la polarización nuclear dinámica (DNP).

Abstract

Este protocolo muestra cómo uniformemente 13C, 15N etiquetado materiales fungicidas pueden ser producidos y experimentos de cómo estos materiales blandos deben ser procedidos para NMR de estado sólido y la sensibilidad mejorada del DNP. También se detalla el procedimiento de procesamiento de las muestras de biomasa vegetal. Este método permite la medición de una serie de 1D y 2D 13C –13C / espectros de correlaciones de15N, que permite alta resolución elucidación estructural de complejos biomateriales en su estado natal, con la mínima perturbación. El isótopo de etiquetado puede ser examinado mediante la cuantificación de la intensidad en espectros 1D y la eficacia de la transferencia de polarización en espectros de correlación 2D. El éxito de la preparación de la muestra de la polarización nuclear dinámica (DNP) puede ser evaluado por el factor de mejora de la sensibilidad. Otros experimentos examinando los aspectos estructurales de los polisacáridos y las proteínas dará lugar a un modelo de la arquitectura tridimensional. Estos métodos pueden ser modificados y adaptados para investigar una amplia gama de materiales ricos en hidratos de carbono, incluyendo las paredes de la célula naturales de plantas, hongos, algas y bacterias, así como sintetizados o diseñado polímeros de hidratos de carbono y su complejo con otros moléculas.

Introduction

Hidratos de carbono juegan un papel central en varios procesos biológicos tales como almacenamiento de energía, construcción estructural y reconocimiento celular y adhesión. Se enriquecen en la pared celular, que es un componente fundamental en plantas, hongos, algas y bacterias1,2,3. La pared celular sirve como una fuente central para la producción de biocombustibles y biomateriales, así como un objetivo prometedor para terapias antimicrobiana4,5,6,7,8 , 9.

La comprensión contemporánea de estos materiales complejos se ha avanzado sustancialmente por décadas de esfuerzos que se dedicaron a la caracterización estructural mediante cuatro principales métodos bioquímicos o genéticos. El primer método principal se basa en tratamientos secuenciales usando productos químicos fuertes o enzimas para romper las paredes celulares en diferentes porciones, que es seguida de composición y análisis del acoplamiento de los azúcares en cada fracción de10. Este método arroja luz sobre la distribución del dominio de los polímeros, pero la interpretación puede ser engañosa debido a las propiedades químicas y físicas de las biomoléculas. Por ejemplo, es difícil determinar si la fracción extraíble de álcali origina de un solo dominio de moléculas menos estructurados o de moléculas espacialmente separadas con solubilidad comparable. En segundo lugar, las porciones extraídas o toda las paredes celulares puede también medirse usando la solución NMR para determinar la vinculación covalente, denominada también como entrecruzamiento entre moléculas diferentes11,12,13, 14,15. De esta manera, la detallada estructura de covalentes anclajes podría ser sondada, pero pueden existir limitaciones debido a la baja solubilidad de los polisacáridos, el relativamente pequeño número de sitios de entrecruzamiento y la ignorancia de los efectos no covalente que estabiliza embalaje de polisacáridos, incluyendo la vinculación de hidrógeno, fuerzas de van der Waals, interacción electrostática y enredo de polímero. En tercer lugar, la afinidad ha sido determinado en vitro usando polisacáridos aislados16,17,18,19, pero la purificación procedimientos pueden alterar sustancialmente la estructura y propiedades de estas biomoléculas. Este método también es incapaz de replicar la deposición sofisticada y montaje de macromoléculas después de biosíntesis. Finalmente, el fenotipo, la morfología celular y propiedades mecánicas de los mutantes genéticos con producción atenuada de cierto componente de la pared celular arrojan luces sobre las funciones estructurales de los polisacáridos, pero se necesitan pruebas más molecular para estos observaciones macroscópicas con la función de ingeniería de proteína maquinarias20.

Los recientes avances en el desarrollo y aplicación de la espectroscopia de RMN de estado sólida multidimensional han introducido una oportunidad única para resolver estos rompecabezas estructurales. Experimentos de NMR estado sólidos 2D/3D permiten la investigación de alta resolución de la composición y arquitectura de materiales ricos en hidratos de carbono en el estado nativo sin mayor perturbación. Se han realizado con éxito estudios estructurales en primaria y pared celular secundaria de las plantas, la biomasa tratada catalíticamente, biofilm bacteriano, el pigmento fantasmas en hongos y, recientemente por los autores, las paredes celulares intactas en un hongo patógeno Aspergillus fumigatus 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31. el desarrollo de la polarización nuclear dinámica (DNP)32,33,34,35,36,37,38 , 39 , 40 , 41 , 42 substancialmente facilita la elucidación estructural de NMR como la mejora de la sensibilidad por DNP notablemente acorta el tiempo experimental de estos biomateriales complejo. El protocolo descrito aquí detalla los procedimientos para el hongo a. fumigatus de isótopo-etiquetado y preparación de hongos y plantas muestras de estado sólido caracterización NMR y DNP. Similares procedimientos de etiquetado debe ser aplicable a otros hongos con medio alterado, y los procedimientos de preparación de la muestra deben ser generalmente aplicables a otros biomateriales ricos en hidratos de carbono.

Protocol

1. crecimiento de 13C, 15N-labeled Aspergillus fumigatus medio líquido Elaboración de etiqueta y 13C, 15medio marcado con NNota: Ambos medio de levadura extracto peptona dextrosa (YPD) y la media mínima mejora43 se utilizaron para el mantenimiento de la cultura fungicida. Se realizan todos los pasos después de autoclavar en campana de flujo laminar para reducir al mínimo la contaminación. Preparación de medio líquid…

Representative Results

El etiquetado del isótopo sustancialmente incrementa la sensibilidad de NMR y hace posible medir una serie de 2D 13C -13C y 13C -15N espectros de correlación para analizar la composición, la hidratación, la movilidad y el embalaje de polímeros, que se integrarán para construir un modelo tridimensional de la arquitectura de la pared celular (figura 1). Si el etiquetado uniforme tiene éxito, un conjunto complet…

Discussion

En comparación con los métodos bioquímicos, NMR de estado sólido tiene ventajas como una técnica no destructiva y de alta resolución. NMR es también cuantitativa en el análisis compositivo, y a diferencia de la mayoría otros métodos analíticos, no han las incertidumbres introducidas por la solubilidad limitada de los biopolímeros. Establecimiento del protocolo actual facilita futuros estudios sobre biomateriales ricos en hidratos de carbono y polímeros funcionalizados. Sin embargo, debe señalarse que el an?…

Declarações

The authors have nothing to disclose.

Acknowledgements

Este trabajo fue financiado por National Science Foundation a través de OIA NSF-1833040. El laboratorio nacional de campo magnético alto (NHMFL) es apoyado por la National Science Foundation a través del DMR-1157490 y el estado de Florida. El sistema MAS-DNP en el NHMFL es financiado en parte por los NIH S10 OD018519 y NSF CHE-1229170.

Materials

Ammonium Molybdate Tetrahydrate Acros Organics 12054-85-2
AMUPol Cortecnet C010P002
Analytical weighing balance Ohaus B730439218 Model PA84C
Bioclave 16 L VWR 470230-598
Biosafety Cabinet Labconco corporation 302319100
Boric acid VWR BDH9222 store at 15-30 °C
Cobalt(II) Chloride Hexahydrate Honeywell|Fluka 60820 ≥98 %
Copper(II) Sulfate Pentahydrate BDH BDH9312 ≥98 %
Corning LSE shaking incubator Thermo Fisher Scientific 7202152
D2O Sigma Aldrich 151882 99.9 atom % D
d6-DMSO Sigma Aldrich 151874 99.9 atom % D
d8-glycerol Sigma Aldrich 447498 ≥99 atom % D
Dialysis tubing 3.2 kDa Sigma Aldrich D2272 132724
Dipotassium Phosphate VWR BDH9266 ≥98 %
Glycerol Sigma Aldrich G5516 ≥99.5 %
Heraus Megafuge 16R Centrifuge Thermo Fischer Scientific 750004271 Maximum RCF 25,830 x g
HR-MAS Disposable Insert Kit Bruker B4493 Kel-F
Iron(II) Sulfate Heptahydrate Alfa Aesar 14498 ≥99+ %
Magnesium Sulfate Heptahydrate VWR 10034998 store at 18-26 °C
Manganese(II) Chloride Tetrahydrate Alfa Aesar 11563 ≥99 %
Monopotassium Phosphate VWR 470302-254 ≥99 %
pH Meter Mettler Toledo B706689216
Tetrasodium Ethylenediaminetetraacetate Acros Organics 13235-36-9 ≥99.5 %
Zinc Sulfate Heptahydrate Alfa Aesar 33399 ≥98 %
12C3, d8-glycerol Cambridge Isotope Laboratory CDLM-8660 12C3, 99.95%; D8, 98%
13C6-glucose Sigma Alrdrich 364606 ≥99 % (CP)
15N-sodium nitrate Sigma Aldrich 364606 ≥98 % 15N, ≥99 (cp)
3.2 mm sapphire NMR rotor Cortecnet B6939
3.2 mm Silicone plug Bruker B7089
4 mm MAS Rotor Kit Bruker H14355 Zirconia

Referências

  1. Murrey, H. E., Hsieh-Wilson, L. C. The chemical neurobiology of carbohydrates. Chemical Reviews. 108 (5), 1708-1731 (2008).
  2. Latge, J. P. The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology. 66 (2), 279-290 (2007).
  3. Cosgrove, D. J. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology. 6 (11), 850-861 (2005).
  4. Furtado, A., et al. Modifying plants for biofuel and biomaterial production. Plant Biotechnology Journal. 12 (9), 1246-1258 (2014).
  5. Loqué, D., Scheller, H. V., Pauly, M. Engineering of plant cell walls for enhanced biofuel production. Current Opinion in Plant Biology. 25, 151-161 (2015).
  6. Latge, J. P. Aspergillus fumigatus and aspergillosis. Clinical Microbiology Reviews. 12 (2), 310-350 (1999).
  7. Ragauskas, A. J., et al. The path forward for biofuels and biomaterials. Science. 311 (5760), 484-489 (2006).
  8. Service, R. F. Cellulosic ethanol – Biofuel researchers prepare to reap a new harvest. Science. 315 (5818), 1488-1491 (2007).
  9. Somerville, C., Youngs, H., Taylor, C., Davis, S. C., Long, S. P. Feedstocks for Lignocellulosic Biofuels. Science. 329 (5993), 790-792 (2010).
  10. Schiavone, M., et al. A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts. FEMS Yeast Research. 14 (6), 933-947 (2014).
  11. Cheng, K., Sorek, H., Zimmermann, H., Wemmer, D. E., Pauly, M. Solution-State 2D NMR Spectroscopy of Plant Cell Walls Enabled by a Dimethylsulfoxide-d(6)/1-Ethyl-3-methylimidazolium Acetate Solvent. Analytical Chemistry. 85 (6), 3213-3221 (2013).
  12. Mansfield, S. D., Kim, H., Lu, F. C., Ralph, J. Whole plant cell wall characterization using solution-state 2D NMR. Nature Protocols. 7 (9), 1579-1589 (2012).
  13. Tan, L., et al. An Arabidopsis Cell Wall Proteoglycan Consists of Pectin and Arabinoxylan Covalently Linked to an Arabinogalactan Protein. Plant Cell. 25 (1), 270-287 (2013).
  14. Kollar, R., Petrakova, E., Ashwell, G., Robbins, P. W., Cabib, E. Architecture of the Yeast-Cell Wall – the Linkage between Chitin and Beta(1-3)-Glucan. Journal of Biological Chemistry. 270 (3), 1170-1178 (1995).
  15. Kollar, R., et al. Architecture of the yeast cell wall – beta(1->6)-glucan interconnects mannoprotein, beta(1-3)-glucan, and chitin. Journal of Biological Chemistry. 272 (28), 17762-17775 (1997).
  16. Mccann, M. C., et al. Old and new ways to probe plant cell wall architecture. Canadian Journal of Botany. 73, S103-S113 (1995).
  17. Whitney, S. E. C., Brigham, J. E., Darke, A. H., Reid, J. S. G., Gidley, M. J. In-Vitro Assembly of Cellulose/Xyloglucan Networks – Ultrastructural and Molecular Aspects. The Plant Journal. 8 (4), 491-504 (1995).
  18. Zykwinska, A. W., Ralet, M. C. J., Garnier, C. D., Thibault, J. F. J. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiology. 139 (1), 397-407 (2005).
  19. Kiemle, S. N., et al. Role of (1,3)(1,4)-beta-Glucan in Cell Walls: Interaction with Cellulose. Biomacromolecules. 15 (5), 1727-1736 (2014).
  20. Pogorelko, G., Lionetti, V., Bellincampi, D., Zabotina, O. Cell wall integrity: targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. Plant Signaling & Behavior. 8 (9), e25435 (2013).
  21. Wang, T., Park, Y. B., Cosgrove, D. J., Hong, M. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis thaliana Primary Cell Walls: Evidence from Solid-State NMR. Plant Physiology. 168 (3), 871-884 (2015).
  22. Wang, T., Salazar, A., Zabotina, O. A., Hong, M. Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional 13C solid-state nuclear magnetic resonance spectroscopy. Bioquímica. 53 (17), 2840-2854 (2014).
  23. Grantham, N. J., et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nature Plants. 3 (11), 859-865 (2017).
  24. Simmons, T. J., et al. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communications. 7, 13902 (2016).
  25. Komatsu, T., Kikuchi, J. Selective Signal Detection in Solid-State NMR Using Rotor-Synchronized Dipolar Dephasing for the Analysis of Hemicellulose in Lignocellulosic Biomass. The Journal of Physical Chemistry Letters. 4 (14), 2279-2283 (2013).
  26. Perras, F. A., et al. Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. The Journal of Physical Chemistry A. 121 (3), 623-630 (2017).
  27. Chatterjee, S., Prados-Rosales, R., Itin, B., Casadevall, A., Stark, R. E. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall. Journal of Biological Chemistry. 290 (22), 13779-13790 (2015).
  28. Zhong, J., Frases, S., Wang, H., Casadevall, A., Stark, R. E. Following fungal melanin biosynthesis with solid-state NMR: biopolymer molecular structures and possible connections to cell-wall polysaccharides. Bioquímica. 47 (16), 4701-4710 (2008).
  29. Kang, X., et al. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nature Communications. 9 (1), 2747 (2018).
  30. Takahashi, H., et al. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. Journal of the American Chemical Society. 135 (13), 5105-5110 (2013).
  31. Wang, T., Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. Journal of Experimental Botany. 67, 503-514 (2016).
  32. Mentink-Vigier, F., Akbey, &. #. 2. 2. 0. ;., Oschkinat, H., Vega, S., Feintuch, A. Theoretical aspects of magic angle spinning-dynamic nuclear polarization. Journal of Magnetic Resonance. 258, 102-120 (2015).
  33. Gupta, R., et al. Dynamic nuclear polarization enhanced MAS NMR spectroscopy for structural analysis of HIV-1 protein assemblies. The Journal of Physical Chemistry B. 120 (2), 329-339 (2016).
  34. Takahashi, H., Hediger, S., De Paëpe, G. Matrix-free dynamic nuclear polarization enables solid-state NMR 13 C-13 C correlation spectroscopy of proteins at natural isotopic abundance. Chemical Communications. 49 (82), 9479-9481 (2013).
  35. Ni, Q. Z., et al. High frequency dynamic nuclear polarization. Accounts of Chemical Research. 46 (9), 1933-1941 (2013).
  36. Koers, E. J., et al. NMR-based structural biology enhanced by dynamic nuclear polarization at high magnetic field. Journal of Biomolecular NMR. 60 (2-3), 157-168 (2014).
  37. Saliba, E. P., et al. Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids. Journal of the American Chemical Society. 139 (18), 6310-6313 (2017).
  38. Mentink-Vigier, F., et al. Efficient cross-effect dynamic nuclear polarization without depolarization in high-resolution MAS NMR. Chemical Science. 8 (12), 8150-8163 (2017).
  39. Smith, A. N., Twahir, U. T., Dubroca, T., Fanucci, G. E., Long, J. R. Molecular Rationale for Improved Dynamic Nuclear Polarization of Biomembranes. The Journal of Physical Chemistry B. 120 (32), 7880-7888 (2016).
  40. Su, Y., Andreas, L., Griffin, R. G. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and 1H detection. Annual Reviews of Biochemistry. 84, 465-497 (2015).
  41. Hediger, S., Lee, S., Mentink-Vigier, F., Paepe, G. D. MAS-DNP Enhancements: Hyperpolarization, Depolarization, and Absolute Sensitivity. eMagRes. 7, 1-13 (2018).
  42. Ni, Q. Z., et al. In Situ Characterization of Pharmaceutical Formulations by Dynamic Nuclear Polarization Enhanced MAS NMR. The Journal of Physical Chemistry B. 121 (34), 8132-8141 (2017).
  43. Hill, T. W., Kafer, E. Improved protocols for Aspergillus minimal medium: trace element and minimal medium salt stock solutions. Fungal Genetics Reports. 48 (1), 20-21 (2001).
  44. Rossini, A. J., et al. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Accounts of Chemical Research. 46 (9), 1942-1951 (2013).
  45. Sauvée, C., et al. Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angewandte Chemie International Edition. 125 (41), 11058-11061 (2013).
  46. Phyo, P., et al. Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems. Plant physiology. 175 (4), 1593-1607 (2017).
  47. White, P. B., Wang, T., Park, Y. B., Cosgrove, D. J., Hong, M. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. Journal of the American Chemical Society. 136 (29), 10399-10409 (2014).
  48. Jippo, T., Kamo, O., Nagayama, K. Determination of long-range proton-carbon 13 coupling constants with selective two-dimensional INEPT. Journal of Magnetic Resonance. 66 (2), 344-348 (1969).
  49. Morris, G. A. Sensitivity enhancement in nitrogen-15 NMR: polarization transfer using the INEPT pulse sequence. Journal of the American Chemical Society. 102 (1), 428-429 (1980).
  50. Cadars, S., et al. The refocused INADEQUATE MAS NMR experiment in multiple spin-systems: interpreting observed correlation peaks and optimising lineshapes. Journal of Magnetic Resonance. 188 (1), 24-34 (2007).
  51. Lesage, A., Bardet, M., Emsley, L. Through-bond carbon− carbon connectivities in disordered solids by NMR. Journal of the American Chemical Society. 121 (47), 10987-10993 (1999).
  52. Bennett, A. E., et al. Homonuclear radio frequency-driven recoupling in rotating solids. The Journal of Chemical Physics. 108 (22), 9463-9479 (1998).
  53. Lu, X., Guo, C., Hou, G., Polenova, T. Combined zero-quantum and spin-diffusion mixing for efficient homonuclear correlation spectroscopy under fast MAS: broadband recoupling and detection of long-range correlations. Journal of Biomolecular NMR. 61 (1), 7-20 (2015).
  54. Wang, T., Zabotina, O., Hong, M. Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Bioquímica. 51 (49), 9846-9856 (2012).
  55. Wang, T., Yang, H., Kubicki, J. D., Hong, M. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations. Biomacromolecules. 17 (6), 2210-2222 (2016).
  56. Kirui, A., et al. Atomic Resolution of Cotton Cellulose Structure Enabled by Dynamic Nuclear Polarization Solid-State NMR. Cellulose. , (2019).
  57. Wang, T., et al. Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proceedings of the National Academy of Sciences of the United States of America. 110 (41), 16444-16449 (2013).
  58. Wang, T., Park, Y. B., Cosgrove, D. J., Hong, M. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis thaliana Primary Cell Walls: Evidence from Solid-State NMR. Plant Physiology. 168 (3), 871-884 (2015).
  59. Liao, S. Y., Lee, M., Wang, T., Sergeyev, I. V., Hong, M. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location. Journal of Biomolecular NMR. 64 (3), 223-237 (2016).
  60. Kang, X., et al. Lignin-Polysaccharide Interactions in Plant Secondary Cell Walls Revealed by Solid-State NMR. Nature Communications. 10, 347 (2019).
  61. Takahashi, H., et al. Rapid Natural-Abundance 2D 13C-13C Correlation Spectroscopy Using Dynamic Nuclear Polarization Enhanced Solid-State NMR and Matrix-Free Sample Preparation. Angewandte Chemie International Edition. 51 (47), 11766-11769 (2012).
check_url/pt/59152?article_type=t

Play Video

Citar este artigo
Kirui, A., Dickwella Widanage, M. C., Mentink-Vigier, F., Wang, P., Kang, X., Wang, T. Preparation of Fungal and Plant Materials for Structural Elucidation Using Dynamic Nuclear Polarization Solid-State NMR. J. Vis. Exp. (144), e59152, doi:10.3791/59152 (2019).

View Video