Summary

大鼠模型中的面部神经外科研究同氧抑制与再生

Published: May 05, 2020
doi:

Summary

该协议描述了大鼠模型中面部神经手术的可重复方法,包括各种可诱导损伤模式的描述。

Abstract

该协议描述了研究大鼠面部神经损伤模型中的六角再生和抑制的一致和可重复的方法。面部神经可以沿其整个长度进行操纵,从颅内部分到外时过程。用于再生特性实验研究的主要神经损伤类型有三种:神经挤压、截断和神经间隙。可能的干预范围很广,包括神经手术操作、神经活性试剂或细胞的输送,以及中央或终末期器官操作。该模型在研究神经再生方面的优点包括简单性、可重复性、物种间一致性、大鼠的可靠生存率以及相对于鼠型增加解剖尺寸。其局限性涉及与小鼠模型相比,基因操作更为有限,大鼠的再生能力更胜一等,因此面部神经科学家必须仔细评估恢复的时间点,以及是否将结果转化为高等动物和人类研究。面部神经损伤大鼠模型允许功能性、电生理和组形参数,用于神经再生的解释和比较。因此,它具有巨大的潜力,进一步理解和治疗面部神经损伤在人类患者的破坏性后果。

Introduction

头部和颈部部位的颅神经损伤可继发先天性、传染性、特发性、致源性、创伤性、神经学、肿瘤或全身病因1。颅神经VII,或面部神经,通常受到影响。面部神经功能障碍的发生率可能很大,因为它每年影响每10万人20至30人2。面部神经的主要运动分支是时态、酶、布卡、边缘性腺和颈椎分支;根据所涉及的分支,后果可能包括口腔无能或流口水、角膜干燥、视觉场阻塞继为普托西斯、肌张力障碍或面部不对称22、3。3长期发病包括同步性现象,或一个面部肌肉群的非自愿运动,试图自愿收缩一个独特的面部肌肉群。眼腔同步性是最常见的异常再生作为面部神经损伤的后遗症,导致功能障碍,尴尬,自尊下降,生活质量低下3。对单个分支的伤害决定了有选择地受损的功能。

面部神经损伤的临床治疗效果不达标,需要进一步研究,以改善效果。类固醇可以缓解急性面部神经肿胀, 而肉毒杆菌是有用的天生运动;但是,在医生的军备中,主要的重建选择包括通过神经修复、替代或恢复33、4、5、64,5,6进行手术干预。根据面部神经损伤的类型,面部神经外科医生可能使用多种选择。对于简单的截断,神经再抗是有用的,而电缆移植修复更适合神经缺陷;为了恢复功能,外科医生可以选择静态或动态面部恢复手术。在许多面部神经损伤和随后的修复的情况下,即使在有经验的面部神经外科医生手中,最好的结果仍然导致持续的面部不对称和功能损害7。

这些不理想的结果刺激了对面部神经再生的广泛研究。广泛的关注主题包括完善和创新神经修复技术,确定各种神经再生因素的影响,以及评估特定神经抑制剂的潜力,以帮助对抗合成酶88,9,10,119,10,11的长期结果。虽然体外模型可用于评估一些有利于生长或抑制因子的特征,但最好通过可翻译的动物模型完成关于这一主题的真正转化研究。

决定使用哪种动物模型可能具有挑战性,因为研究人员已经利用了大型动物,如绵羊和小动物模型,如老鼠12,13。12,虽然大型动物模型提供理想的解剖可视化效果,但使用它们需要专用设备和人员,不易或容易获得。此外,推动一项研究来证明效果可能很高,而且可能不属于许多科学中心的可行范围。因此,小型动物模型被最常用的。小鼠模型可用于评估与面部神经手术相关的一些结果;然而,神经长度的有限会限制科学家模拟某些模式的能力,如大间隙损伤14。

因此,大鼠鼠原型已成为科学家可以执行创新外科手术或利用抑制或促进生长因子并评估各种结果参数效果的主力模型。大鼠面部神经解剖学是可预测和容易接近在一个可重复的方式。与鼠标模型相比,其规模更大,允许对各种手术缺陷进行建模,范围从简单的截面到5毫米的间隙15,16。15,这进一步允许在缺陷部位应用复杂的干预,包括局部因子的放置、因子的神经内注入,以及等体移植或桥17、18、19、20、21、22、23。17,18,19,20,21,22,23

大鼠的温顺性质,其可靠的解剖学,其有效神经再生的倾向,允许收集许多结果措施,以回应上述手术模式的伤害24。通过大鼠模型,面部神经科学家能够通过免疫组化学评估对损伤、神经和肌肉组学结果的电生理反应,通过跟踪颤垫的运动和评估眼闭合的功能结果,以及通过荧光或共聚焦显微镜,通过荧光或,共聚焦显微镜,包括11、22、23、25、26、27、28、29,27,2829微微和宏观变化。11,22,2325,26因此,以下协议将概述对大鼠面部神经的手术方法以及可诱发的损伤模式。

Protocol

所有干预措施均严格按照国家卫生研究院(NIH)准则进行。该实验协议在实施前得到了密歇根大学机构动物护理和使用委员会(IACUC)的批准。使用了十周大的成年雌性斯普拉格-道利大鼠。 1. 手术前 确保手术前有适当的消毒手术器械、镇痛药、麻醉药物和氧气。有关完整列表,请参阅材料表。 2. 术前设置 确保有足够的工…

Representative Results

在最初的外科手术后,有两种主要的结果测量:活体动物的连续测量和需要牺牲动物的测量。连续测量的例子包括电生理测定,如复合肌肉动作势谱测量30,通过激光辅助或摄像手段9评估面部肌肉运动,甚至重复现场成像荧光转基因动物面部神经的再生31,32。,32图1演示…

Discussion

大鼠面部神经损伤模型已成为最通用的系统,评估神经营养因子,由于其手术可及性,分支模式,和生理意义27,29,33,34,35,36。27,29,33,34,35,36视频演示与转基因动物数据应用的结合,为神经再生现象的科学研究提供了新的可能。该模型允许对创?…

Declarações

The authors have nothing to disclose.

Acknowledgements

S.A.A.由美国面部整形和重建外科学会莱斯利·伯恩斯坦助学金计划资助。

Materials

1.8% isoflurane VetOne 13985-030-40
11-0 nylon microsutures AROSuture TK-117038
4-0 monocryl suture VWR 75982-084
Buprenorphine SR ZooPharm MIF 900-006
Carprofen Sigma-Aldrich MFCD00079028
Chlorhexidine VWR IC19135805
Jeweler forceps VWR 21909-458
Micro Weitlaner retractor VWR 82030-146
Micro-scissors VWR 100492-348
Mini tenotomy scissors VWR 89023-522
Number 15 scalpel blade VWR 102097-834
Operating microscope Leica
Petrolatum eye gel Pharmaderm B002LUWBEK
Sterile water VWR 89125-834
Tissue adhesive Vetbond, 3M NC9259532
Water conductor pad Aqua Relief System ARS2000B

Referências

  1. Chan, J. Y. K., Byrne, P. J. Management of facial paralysis in the 21st century. Facial Plastic Surgery. 27 (4), 346-357 (2011).
  2. Razfar, A., Lee, M. K., Massry, G. G., Azizzadeh, B. Facial Paralysis Reconstruction. Otolaryngologic Clinics of North America. 49 (2), 459-473 (2016).
  3. Couch, S. M., Chundury, R. V., Holds, J. B. Subjective and objective outcome measures in the treatment of facial nerve synkinesis with onabotulinumtoxinA (Botox). Ophthalmic Plastic and Reconstructive Surgery. 30 (3), 246-250 (2014).
  4. Wei, L. A., Diels, J., Lucarelli, M. J. Treating buccinator with botulinum toxin in patients with facial synkinesis: A previously overlooked target. Ophthalmic Plastic and Reconstructive Surgery. 32 (2), 138-141 (2016).
  5. Cooper, L., Lui, M., Nduka, C. Botulinum toxin treatment for facial palsy: A review. Journal of Plastic, Reconstructive and Aesthetic Surgery. 70 (6), 833-841 (2017).
  6. Choi, K. H., et al. Botulinum toxin injection of both sides of the face to treat post-paralytic facial synkinesis. Journal of Plastic, Reconstructive and Aesthetic Surgery. 66 (8), 1058-1063 (2013).
  7. Yang, X. N., et al. Peripheral nerve repair with epimysium conduit. Biomaterials. 34 (22), 5606-5616 (2013).
  8. Banks, C. A., et al. Long-term functional recovery after facial nerve transection and repair in the rat. Journal of Reconstructive Microsurgery. 31 (3), 210-216 (2015).
  9. Hadlock, T. A., Kowaleski, J., Lo, D., MacKinnon, S. E., Heaton, J. T. Rodent facial nerve recovery after selected lesions and repair techniques. Plastic and Reconstructive Surgery. 125 (1), 99-109 (2010).
  10. Hadlock, T., et al. The effect of electrical and mechanical stimulation on the regenerating rodent facial nerve. Laryngoscope. 120 (6), 1094-1102 (2009).
  11. Hadlock, T., et al. Functional assessments of the rodent facial nerve: A synkinesis model. Laryngoscope. 118 (10), 1744-1749 (2008).
  12. Diogo, C. C., et al. The use of sheep as a model for studying peripheral nerve regeneration following nerve injury: review of the literature. Neurological Research. 39 (10), 926-939 (2017).
  13. Wanner, R., et al. Functional and Molecular Characterization of a Novel Traumatic Peripheral Nerve–Muscle Injury Model. NeuroMolecular Medicine. 19 (2-3), 357-374 (2017).
  14. Olmstead, D. N., et al. Facial nerve axotomy in mice: A model to study motoneuron response to injury. Journal of Visualized Experiments. (96), e52382 (2015).
  15. Maeda, T., Hori, S., Sasaki, S., Maruo, S. Effects of tension at the site of coaptation on recovery of sciatic nerve function after neurorrhaphy: Evaluation by walking-track measurement, electrophysiology, histomorphometry, and electron probe X-ray microanalysis. Microsurgery. 19 (4), 200-207 (1999).
  16. Zhang, F., Inserra, M., Richards, L., Terris, D. J., Lineaweaver, W. C. Quantification of nerve tension after nerve repair: Correlations with nerve defects and nerve regeneration. Journal of Reconstructive Microsurgery. 17 (6), 445-451 (2001).
  17. Macfarlane, B. V., Wright, A., Benson, H. A. E. Reversible blockade of retrograde axonal transport in the rat sciatic nerve by vincristine. Journal of Pharmacy and Pharmacology. 49 (1), 97-101 (1997).
  18. Stromberg, B. V., Vlastou, C., Earle, A. S. Effect of nerve graft polarity on nerve regeneration and function. Journal of Hand Surgery. 4 (5), 444-445 (1979).
  19. Sotereanos, D. G., et al. Reversing nerve-graft polarity in a rat model: The effect on function. Journal of Reconstructive Microsurgery. 8 (4), 303-307 (1992).
  20. Whitlock, E. L., et al. Ropivacaine-induced peripheral nerve injection injury in the rodent model. Anesthesia and Analgesia. 111 (1), 214-220 (2010).
  21. Lloyd, B. M., et al. Use of motor nerve material in peripheral nerve repair with conduits. Microsurgery. 27 (2), 138-145 (2007).
  22. Kawamura, D. H., et al. Regeneration through nerve isografts is independent of nerve geometry. Journal of Reconstructive Microsurgery. 21 (4), 243-249 (2005).
  23. Brenner, M. J., et al. Repair of motor nerve gaps with sensory nerve inhibits regeneration in rats. Laryngoscope. 116 (9), 1685-1692 (2006).
  24. Brenner, M. J., et al. Role of timing in assessment of nerve regeneration. Microsurgery. 28 (4), 265-272 (2008).
  25. Heaton, J. T., et al. A system for studying facial nerve function in rats through simultaneous bilateral monitoring of eyelid and whisker movements. Journal of Neuroscience Methods. 171 (2), 197-206 (2008).
  26. Magill, C. K., Moore, A. M., Borschel, G. H., Mackinnon, S. E. A new model for facial nerve research: The novel transgenic Thy1-GFP rat. Archives of Facial Plastic Surgery. 12 (5), 315-320 (2010).
  27. Guntinas-Lichius, O., et al. Factors limiting motor recovery after facial nerve transection in the rat: Combined structural and functional analyses. European Journal of Neuroscience. 21 (2), 391-402 (2005).
  28. Skouras, E., et al. Manual stimulation, but not acute electrical stimulation prior to reconstructive surgery, improves functional recovery after facial nerve injury in rats. Restorative Neurology and Neuroscience. 27 (3), 237-251 (2009).
  29. Bischoff, A., et al. Manual stimulation of the orbicularis oculi muscle improves eyelid closure after facial nerve injury in adult rats. Muscle and Nerve. 39 (2), 197-205 (2009).
  30. Schulz, A., Walther, C., Morrison, H., Bauer, R. In vivo electrophysiological measurements on mouse sciatic nerves. Journal of Visualized Experiments. (86), e51181 (2014).
  31. Placheta, E., et al. Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats. JAMA Facial Plastic Surgery. 17 (1), 8-15 (2015).
  32. Moore, A. M., et al. A transgenic rat expressing green fluorescent protein (GFP) in peripheral nerves provides a new hindlimb model for the study of nerve injury and regeneration. Journal of Neuroscience Methods. 204 (1), 19-27 (2012).
  33. Grosheva, M., et al. Early and continued manual stimulation is required for long-term recovery after facial nerve injury. Muscle and Nerve. 57 (1), 100-106 (2018).
  34. Grosheva, M., et al. Comparison of trophic factors’ expression between paralyzed and recovering muscles after facial nerve injury. A quantitative analysis in time course. Experimental Neurology. 279, 137-148 (2016).
  35. Grosheva, M., et al. Local stabilization of microtubule assembly improves recovery of facial nerve function after repair. Experimental Neurology. 209 (1), 131-144 (2008).
  36. Angelov, D. N., et al. Mechanical stimulation of paralyzed vibrissal muscles following facial nerve injury in adult rat promotes full recovery of whisking. Neurobiology of Disease. 26 (1), 229-242 (2007).
  37. Tomov, T. L., et al. An example of neural plasticity evoked by putative behavioral demand and early use of vibrissal hairs after facial nerve transection. Experimental Neurology. 178 (2), 207-218 (2002).
  38. Streppel, M., et al. Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion. European Journal of Neuroscience. 15 (8), 1327-1342 (2002).
  39. Peeva, G. P., et al. Improved outcome of facial nerve repair in rats is associated with enhanced regenerative response of motoneurons and augmented neocortical plasticity. European Journal of Neuroscience. 24 (8), 2152-2162 (2006).
  40. Pavlov, S. P., et al. Manually-stimulated recovery of motor function after facial nerve injury requires intact sensory input. Experimental Neurology. 211 (1), 292-300 (2008).
  41. Guntinas-Lichius, O., et al. Transplantation of olfactory ensheathing cells stimulates the collateral sprouting from axotomized adult rat facial motoneurons. Experimental Neurology. 172 (1), 70-80 (2001).
  42. Guntinas-Lichius, O., Angelov, D. N., Stennert, E., Neiss, W. F. Delayed hypoglossal-facial nerve suture after predegeneration of the peripheral facial nerve stump improves the innervation of mimetic musculature by hypoglossal motoneurons. Journal of Comparative Neurology. 387 (2), 234-242 (1997).
  43. Sinis, N., et al. Electrical stimulation of paralyzed vibrissal muscles reduces endplate reinnervation and does not promote motor recovery after facial nerve repair in rats. Annals of Anatomy. 191 (4), 356-370 (2009).
  44. Kiryakova, S., et al. Recovery of whisking function promoted by manual stimulation of the vibrissal muscles after facial nerve injury requires insulin-like growth factor 1 (IGF-1). Experimental Neurology. 222 (2), 226-234 (2010).
  45. Banati, R. B., et al. Early and rapid de novo synthesis of Alzheimer βA4-Amyloid precursor protein (APP) in activated microglia. Glia. 9 (3), 199-210 (1993).
  46. Blinzinger, K., Kreutzberg, G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Zeitschrift für Zellforschung und Mikroskopische Anatomie. 85 (2), 145-157 (1968).
  47. Rieske, E., et al. Microglia and microglia-derived brain macrophages in culture: generation from axotomized rat facial nuclei, identification and characterization in vitro. Brain Research. 492 (1-2), 1-14 (1989).
  48. Matsumoto, K., et al. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: A histological and electrophysiological evaluation of regenerated nerves. Brain Research. 868 (2), 315-328 (2000).
  49. Mattsson, P., Janson, A. M., Aldskogius, H., Svensson, M. Nimodipine promotes regeneration and functional recovery after intracranial facial nerve crush. Journal of Comparative Neurology. 437 (1), 106-117 (2001).
  50. Yian, C. H., Paniello, R. C., Gershon Spector, J. Inhibition of motor nerve regeneration in a rabbit facial nerve model. Laryngoscope. 111 (5), 786-791 (2001).
  51. Angelov, D. N., et al. Nimodipine accelerates axonal sprouting after surgical repair of rat facial nerve. Journal of Neuroscience. 16 (3), 1041-1048 (1996).
check_url/pt/59224?article_type=t

Play Video

Citar este artigo
Ali, S. A., Stebbins, A. W., Hanks, J. E., Kupfer, R. A., Hogikyan, N. D., Feldman, E. L., Brenner, M. J. Facial Nerve Surgery in the Rat Model to Study Axonal Inhibition and Regeneration. J. Vis. Exp. (159), e59224, doi:10.3791/59224 (2020).

View Video