Summary

从脐带血源性多能干细胞中提取三维皮肤有机细胞

Published: April 18, 2019
doi:

Summary

我们提出了一个协议, 说明如何区分诱导多能干细胞衍生角质形成细胞和成纤维细胞, 并产生三维皮肤有机体, 使用这些角质形成细胞和成纤维细胞。该协议包含生成人性化小鼠模型的附加步骤。这里介绍的技术将改进皮肤科的研究。

Abstract

皮肤是人体最大的器官, 有许多功能。皮肤作为身体的屏障和保护者, 调节身体功能。仿性主义是模仿自然的模型、系统和元素, 目的是解决复杂的人类问题1。皮肤仿生学是体外疾病研究和体内再生医学的有用工具。人体诱导多能干细胞具有无限增殖和分化为三种生殖层的能力。人类 Ipsc 是由各种原代细胞产生的, 如血细胞、角质形成细胞、成纤维细胞等。其中, 脐带血单个核细胞 (Cbmc) 已从同种异体再生医学的角度成为替代细胞来源。Cbmc 在再生医学中很有用, 因为人类白细胞抗原 (HLA) 分型对细胞银行系统至关重要。我们提供了一种方法, 分化为角质形成细胞和成纤维细胞, 并产生三维皮肤有机体。Cbmc-ipscc 衍生角质形成细胞和成纤维细胞具有类似于原代细胞系的特征。3D 皮肤有机体是通过将表皮层覆盖在真皮层而产生的。通过移植这种3D 皮肤有机体, 生成了一个人性化的小鼠模型。本研究表明, 三维人体 ipsc 衍生皮肤有机体可能是一种新的, 替代工具的皮肤科研究在体外和体内。

Introduction

皮肤覆盖身体最外层, 保护内脏。皮肤具有多种功能, 包括预防病原体、吸收和储存水、调节体温和排泄身体废物 2。皮肤移植可以根据皮肤来源进行分类;使用另一个捐献者皮肤的移植被称为同种异体移植, 使用患者自己的皮肤的移植是自体移植。虽然自体移植是首选的治疗方法, 因为它的低排斥风险, 皮肤活检是很难执行严重病变或皮肤细胞数量不足的患者。在严重烧伤的患者中, 覆盖大面积所需的皮肤细胞数量是其三倍。患者体内皮肤细胞的有限可用性导致需要同种异体移植的情况。同种异体移植被暂时使用, 直到可以进行自体移植, 因为它通常在大约 1周3后被宿主的免疫系统拒绝.为了克服患者免疫系统的排斥, 移植必须来自与患者4具有相同免疫身份的来源。

人的 Ipsc 是干细胞治疗的新兴细胞来源5。人类的 Ipsc 是由体细胞产生的, 使用的是 OCT4、SOX2、Klf4 和 c-Myc6 等重新编程因子。使用人的 ipsc 克服了胚胎干细胞 (esc) 的伦理和免疫学问题 7,8.人的 Ipsc 具有多能性, 可分为三个细菌层9。HLA 是再生医学中的一个关键因素, hla 的存在决定了免疫反应和排斥的可能性10。使用患者衍生的 Ipsc 解决了细胞源限制和免疫系统排斥的问题。Cbmc 也已成为再生医学替代细胞来源11。强制 HLA 分型, 发生在 CBMC 银行业务, 可以很容易地用于研究和移植。此外, 纯合 hla 型 Ipsc 可广泛应用于各种患者12。Cbmc-ipsc 库是一种新的、有效的细胞治疗和同种异体再生医学121314的策略。在这项研究中, 我们使用 Cbmc-ipsc, 分化为角质形成细胞和成纤维细胞, 并产生分层的三维皮肤层。这项研究的结果表明, Cbmcc-ipscc 衍生的3D 皮肤有机体是一种新的工具, 用于体外和体内皮肤科的研究。

Protocol

所有涉及动物的程序都是根据《实验动物福利法》、《实验动物护理和使用指南》以及机构动物护理机构提供的啮7号动物实验指南和政策进行的。韩国天主教大学医学院使用委员会 (IACUC)。研究议定书得到韩国天主教大学机构审查委员会的批准 (CUMC-2018-0191-01)。IACUC 和韩国天主教大学实验动物系 (DOLA) 松井校区于2017年认可了韩国食品药品监督管理局的韩国卓越动物实验室设施, 并获得了评估和动物…

Representative Results

皮肤在很大程度上是由表皮和真皮组成的。角质形成细胞是表皮的主要细胞类型, 成纤维细胞是真皮的主要细胞类型。角质形成细胞分化的方案如图 1a 所示。Cbmcc-ipcsc 保存在一个玻璃体涂膜盘中 (图 1b)。在这项研究中, 我们区分 Cbmc-ipsc 到角质形成细胞和成纤维细胞使用 EB 形成。我们使用悬挂下降法生成了 Eb, 以确保角质形成?…

Discussion

人类 Ipsc 被认为是个性化再生医学的新选择.患者派生的个性化 ipsc 反映了可用于疾病建模、药物筛选和自体移植1819的患者特征。使用患者衍生的 ipsc 还可以克服原代细胞、缺乏足够的细胞数量和免疫反应51719 的问题。然而, 由于时间、成本和劳动力限制, 生?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了大韩民国卫生、福利和家庭事务部韩国保健技术 &Amp; 开发项目的赠款 (H16C2177、H18C1178) 的资助。

Materials

Adenine Sigma A2786 Component of differentiation medium for fibroblast
AggreWell Medium (EB formation medium) STEMCELL 05893 EB formation
Anti-Fibronectin antibody abcam ab23750 Fibroblast marker
Anti-KRT14 antibody abcam ab7800 Keratinocyte marker
Anti-Loricrin antibody abcam ab85679 Stratum corneum marker
Anti-p63 antibody abcam ab124762 Keratinocyte marker
Anti-Vimentin antibody Santa cruz sc-7558 Fibroblast marker
BAND AID FLEXIBLE FABRIC Johnson & Johnson Bandage
Basement membrane matrix (Matrigel) BD 354277 Component of differentiation medium for fibroblast
BLACK SILK suture AILEEE SK617 Skin graft
CaCl2 Sigma C5670 Component of epithelial medium for 3D skin organoid
Collagen type I BD 354236 3D skin organoid
Collagen type IV Santa-cruz sc-29010 Component of differentiation medium for keratinocyte
Defined keratinocyte-Serum Free Medium Gibco 10744-019 Component of differentiation medium for keratinocyte
DMEM, high glucose Gibco 11995065 Component of differentiation medium
DMEM/F12 Medium Gibco 11330-032 Component of differentiation medium
Essential 8 medium Gibco A1517001 iPSC medium
FBS, Qualified Corning 35-015-CV Component of differentiation medium for fibroblast and keratinocyte
Glutamax Supplement  Gibco 35050061 Component of differentiation medium for fibroblast
Insulin Invtrogen 12585-014 Component of differentiation medium for fibroblast and keratinocyte
Iris standard curved scissor Professional PC-02.10 Surgical instrument
Keratinocyte Serum Free Medium Gibco 17005-042 Component of differentiation medium for keratinocyte
L-ascorbic acid 2-phosphata sesquimagnesium salt hydrate Sigma A8960 Component of differentiation medium for keratinocyte
MEM Non-Essential Amino Acid Gibco 1140050 Component of differentiation medium for fibroblast
Meriam Forceps Thumb 16 cm HIROSE HC 2265-1 Surgical instrument
NOD.CB17-Prkdc SCID/J The Jackson Laboratory 001303 Mice strain for skin graft
Petri dish 90 mm Hyundai Micro H10090 Plastic ware
Recombinant Human BMP-4 R&D 314-BP Component of differentiation medium for keratinocyte
Recombinant human EGF protein R&D 236-EG Component of differentiation medium for keratinocyte
Retinoic acid Sigma R2625 Component of differentiation medium for keratinocyte
T/C Petridish 100 mm, 240/bx TPP 93100 Plastic ware
Transferrin Sigma T3705 Component of epithelial medium for 3D skin organoid
Transwell-COL collagen-coated membrane inserts  Corning CLS3492 Plastic ware for 3D skin organoid 
Vitronectin Life technologies A14700 iPSC culture
Y-27632 Dihydrochloride peprotech 1293823 iPSC culture

Referências

  1. Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A., Pahl, A. K. Biomimetics: its practice and theory. Journal of The Royal Society Interface. 3 (9), 471-482 (2006).
  2. Madison, K. C. Barrier function of the skin: “la raison d’etre” of the epidermis. Journal of Investigative Dermatology. 121 (2), 231-241 (2003).
  3. Chen, M., Przyborowski, M., Berthiaume, F. Stem cells for skin tissue engineering and wound healing. Critical Reviews in Biomedical Engineering. 37 (4-5), 399-421 (2009).
  4. Dixit, S., et al. Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. Journal of Biological Engineering. 11, 49 (2017).
  5. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 10 (6), 678-684 (2012).
  6. Yamanaka, S. Pluripotency and nuclear reprogramming. Philosophical Transactions of the Royal Society B: Biological Sciences. 363 (1500), 2079-2087 (2008).
  7. Scheiner, Z. S., Talib, S., Feigal, E. G. The potential for immunogenicity of autologous induced pluripotent stem cell-derived therapies. Journal of Biological Chemistry. 289 (8), 4571-4577 (2014).
  8. Zimmermann, A., Preynat-Seauve, O., Tiercy, J. M., Krause, K. H., Villard, J. Haplotype-based banking of human pluripotent stem cells for transplantation: potential and limitations. Stem Cells and Development. 21 (13), 2364-2373 (2012).
  9. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663-676 (2006).
  10. Terasaki, P. I. A brief history of HLA. Immunologic Research. 38 (1-3), 139-148 (2007).
  11. Haase, A., et al. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell. 5 (4), 434-441 (2009).
  12. Rim, Y. A., et al. Recent progress of national banking project on homozygous HLA-typed induced pluripotent stem cells in South Korea. Journal of Tissue Engineering and Regenerative Medicine. 12 (3), 1531-1536 (2018).
  13. Nakatsuji, N., Nakajima, F., Tokunaga, K. HLA-haplotype banking and iPS cells. Nature Biotechnology. 26 (7), 739-740 (2008).
  14. Pappas, D. J., et al. Proceedings: human leukocyte antigen haplo-homozygous induced pluripotent stem cell haplobank modeled after the california population: evaluating matching in a multiethnic and admixed population. Stem Cells Translational Medicine. 4 (5), 413-418 (2015).
  15. Embryoid body formation from human pluripotent stem cells in chemically defined E8 media. StemBook Available from: https://www.stembook.org/node/6632 (2008)
  16. Kim, Y., et al. Establishment of a complex skin structure via layered co-culture of keratinocytes and fibroblasts derived from induced pluripotent stem cells. Stem Cell Research & Therapy. 9 (1), 217 (2018).
  17. Diecke, S., Jung, S. M., Lee, J., Ju, J. H. Recent technological updates and clinical applications of induced pluripotent stem cells. The Korean Journal of Internal Medicine. 29 (5), 547-557 (2014).
  18. Shi, Y., Inoue, H., Wu, J. C., Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery. 16 (2), 115-130 (2017).
  19. Yoshida, Y., Yamanaka, S. Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation. 122 (1), 80-87 (2010).
  20. Pham, T. L., Nguyen, T. T., Van Bui, A., Nguyen, M. T., Van Pham, P. Fetal heart extract facilitates the differentiation of human umbilical cord blood-derived mesenchymal stem cells into heart muscle precursor cells. Cytotechnology. 68 (4), 645-658 (2016).
  21. Stecklum, M., et al. Cell differentiation mediated by co-culture of human umbilical cord blood stem cells with murine hepatic cells. In Vitro Cellular & Developmental Biology – Animal. 51 (2), 183-191 (2015).
  22. Nam, Y., Rim, Y. A., Ju, J. H. Chondrogenic Pellet Formation from Cord Blood-derived Induced Pluripotent Stem Cells. Journal of Visualized Experiments. (124), e55988 (2017).
  23. Rim, Y. A., Nam, Y., Ju, J. H. Application of Cord Blood and Cord Blood-derived Induced Pluripotent Stem Cells for Cartilage Regeneration. Cell Transplantation. , (2018).
  24. Shevde, N. K., Mael, A. A. Techniques in embryoid body formation from human pluripotent stem cells. Methods in Molecular Biology. 946, 535-546 (2013).
  25. Shamis, Y., et al. iPSC-derived fibroblasts demonstrate augmented production and assembly of extracellular matrix proteins. In Vitro Cellular & Developmental Biology – Animal. 48 (2), 112-122 (2012).
  26. Bikle, D. D., Xie, Z., Tu, C. L. Calcium regulation of keratinocyte differentiation. Expert Review of Endocrinology & Metabolism. 7 (4), 461-472 (2012).
  27. Bernstam, L. I., Vaughan, F. L., Bernstein, I. A. Keratinocytes grown at the air-liquid interface. In Vitro Cellular & Developmental Biology. 22 (12), 695-705 (1986).
  28. Prunieras, M., Regnier, M., Woodley, D. Methods for cultivation of keratinocytes with an air-liquid interface. Journal of Investigative Dermatology. 81, 28-33 (1983).
  29. Steven, A. C., Bisher, M. E., Roop, D. R., Steinert, P. M. Biosynthetic pathways of filaggrin and loricrin–two major proteins expressed by terminally differentiated epidermal keratinocytes. Journal of Structural Biology. 104 (1-3), 150-162 (1990).
  30. Hohl, D., et al. Characterization of human loricrin. Structure and function of a new class of epidermal cell envelope proteins. Journal of Biological Chemistry. 266 (10), 6626-6636 (1991).
  31. Bern, R., et al. Original and modified technique of tie-over dressing: Method and application in burn patients. Burns. 44 (5), 1357-1360 (2018).
  32. Joyce, C. W., Joyce, K. M., Kennedy, A. M., Kelly, J. L. The Running Barbed Tie-over Dressing. Plastic and Reconstructive Surgery – Global Open. 2 (4), 137 (2014).
  33. Wang, C. K., Nelson, C. F., Brinkman, A. M., Miller, A. C., Hoeffler, W. K. Spontaneous cell sorting of fibroblasts and keratinocytes creates an organotypic human skin equivalent. Journal of Investigative Dermatology. 114 (4), 674-680 (2000).
  34. Yang, R., et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells. Nature Communications. 5, 3071 (2014).
check_url/pt/59297?article_type=t

Play Video

Citar este artigo
Kim, Y., Ju, J. H. Generation of 3D Skin Organoid from Cord Blood-derived Induced Pluripotent Stem Cells. J. Vis. Exp. (146), e59297, doi:10.3791/59297 (2019).

View Video