Summary

小鼠二次运动皮质中双边局部场电位记录半球横向化评价

Published: July 31, 2019
doi:

Summary

在小鼠的双边二次运动皮层(M2)中,我们提供局部场势(LFP)的体内电生理记录,可用于评估半球侧化。研究表明,与WT对照组相比,APP/PS1小鼠左右M2的同步水平发生了变化。

Abstract

本文演示了小鼠皮质区域局部场势 (LFP)的体内双边记录和分析的完整、详细的程序,这些程序可用于评估可能的横向缺陷,以及评估啮齿动物中大脑连接和神经网络活动的耦合。阿尔茨海默氏病(AD)是一种常见的神经退行性疾病,其病理机制在很大程度上仍不为人所知。改变的大脑侧向在老年人中已经得到证明,但异常横向化是否是AD的早期迹象之一尚未确定。为了调查这一点,我们在 3-5 个月大的 AD 模型小鼠 APP/PS1 中记录了双边 LfSP,以及垃圾野生类型 (WT) 控件。左、右二级运动皮层(M2),特别是在伽马带,在APP/PS1小鼠中比在WT对照中更同步,这表明此AD小鼠模型中双边M2的半球不对称性下降。值得注意的是,记录和数据分析过程灵活且易于执行,在进行以神经元回路为重点的实验时,也可以应用于其他大脑通路。

Introduction

阿尔茨海默病(AD)是痴呆症1,2最常见的形式。细胞外β淀粉样蛋白(β-淀粉样蛋白,A+)沉积和细胞内神经纤维缠结(NFTs)是AD3、4、5的主要病理特征,但AD背后的机制发病机制在很大程度上仍不清楚。大脑皮层是认知和记忆的关键结构,在AD6中受损,运动缺陷,如缓慢行走,导航环境困难和步态障碍发生与7岁。在AD患者8和认知影响老年人9的前期运动皮层(PMC)和辅助运动区(SMA)中也观察到了发育前沉积和神经纤维纠结,表明运动受损。AD发病机制中的系统。

大脑由两个不同的大脑半球组成,由纵向裂缝分割。健康的大脑表现出结构和功能不对称10,这被称为”横向化”,使大脑能够有效地处理多种任务和活动。衰老导致认知和运动恶化,同时大脑侧向减少11,12。左半球的运动能力在健康的大脑13中显而易见,但在AD脑异常的侧向性中,由于左半球的统治力与左皮质萎缩14相关而失败, 15,16.因此,了解AD发病机制中大脑横向化的可能变化及其基本机制,可能为AD发病机制提供新的见解,并导致确定潜在的治疗生物标志物。

电生理测量是评价动物神经元活动变化的一种灵敏而有效的方法。通过电生理学研究与同步的半球间转移时间,记录到老年人半球不对称的减少(HAROLD)17,这表明半球不对称的弱化或缺乏单体呈现老年人的言语刺激18。使用APP/PS1,最常用的AD鼠标型号之一19,20,21,22,结合体内双边的LLFP在左和右M2的细胞外记录,我们评估 AD 中可能的横向缺陷。此外,通过简单的参数设置,数据分析软件的内置功能(参见材料表)提供了一种比数学上更快速、更直接的电信号同步分析方法复杂的编程语言,对具有体内电生理学的初学者友好。

Protocol

根据中国科技部《动物实验室指南》,所有动物均按标准条件(12小时明/暗、恒温环境、免费获得食物和水)配对安置,并通过了实验由广州大学地方伦理委员会。这是一个非生存程序。 注:对于代表性结果中显示的数据,APP/PS1(B6C3-Tg(ApPswe,PSEN1dE9)85Dbo/J)在3-5个月大时使用双转基因小鼠和垃圾野生型(WT)对照组进行录音(n = 每组10个)。 1. 动物麻醉和手术 通过…

Representative Results

为了了解早期AD病理学是否损害半球横向化的能力,我们在APP/PS1小鼠的左右M2和WT对照(3-5个月)进行了双边细胞外LFP记录,并分析了这些左和正确的 LLFP。在WT小鼠中,结果表明,正时滞时左右LLFP之间的平均相关性与负时滞时的平均相关性存在显著差异,这暗示了WT对照M2区域存在半球不对称(图4 C;WT-正,0.08161 = 0.01246;WT-负,0.0206 ± 0.01218;p = 4.74531E-4 < 0.001 通过两个样本t</em…

Discussion

我们在这里报告体内双边细胞外记录的过程,以及分析双区域LFP信号的同步,这既灵活又易于进行,用于估计大脑半球的横向化,以及两个大脑区域的神经活动之间的连接性、方向性或耦合性。这不仅可以广泛用于揭示组神经元活动,还可以揭示区域间电生理学的一些基本特性,特别是对于对筛选振荡活动感兴趣的实验室或没有系统多通道记录在行为动物23。

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家自然科学基金(31771219,31871170)、广东省科学技术厅(2013KJCX0054)和广东省自然科学基金(2014A030313418) 的资助。2014A030313440)。

Materials

AC/DC Differential Amplifier A-M Systems Model 3000
Analog Digital converter Cambridge Electronic Design Ltd. Micro1401
Glass borosilicate micropipettes Nanjing spring teaching experimental equipment company 161230 Outer diameter: 1.0mm
Microelectrode puller Narishige PC-10
NaCl Guangzhou Chemical Reagent Factory 7647-14-5
Pin microelectrode holder World Precision Instruments, INC. MEH3SW10
Spike2  Cambridge Electronic Design Ltd.
Stereomicroscope Zeiss 435064-9020-000
Stereotaxic apparatus  RWD Life Science 68045
Urethane Sigma-Aldrich 94300

Referências

  1. Goedert, M., Spillantini, M. G. A century of Alzheimer’s disease. Science. 314 (5800), 777-781 (2006).
  2. Perrin, R. J., Fagan, A. M., Holtzman, D. M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature. 461 (7266), 916-922 (2009).
  3. Cummings, B. J., Pike, C. J., Shankle, R., Cotman, C. W. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiology of aging. 17 (6), 921-933 (1996).
  4. Gordon, M. N., et al. Correlation between cognitive deficits and Abeta deposits in transgenic APP+PS1 mice. Neurobiology of aging. 22 (3), 377-385 (2001).
  5. Fitzpatrick, A. W. P., et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 547 (7662), 185-190 (2017).
  6. Shankar, G. M., et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature medicine. 14 (8), 837-842 (2008).
  7. Buchman, A. S., Bennett, D. A. Loss of motor function in preclinical Alzheimer’s disease. Expert review of neurotherapeutics. 11 (5), 665-676 (2011).
  8. Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., Van Hoesen, G. W. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral cortex. 1 (1), 103-116 (1991).
  9. Giannakopoulos, P., Hof, P. R., Michel, J. P., Guimon, J., Bouras, C. Cerebral cortex pathology in aging and Alzheimer’s disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain research. Brain research reviews. 25 (2), 217-245 (1997).
  10. Renteria, M. E. Cerebral asymmetry: a quantitative, multifactorial, and plastic brain phenotype. Twin research and human genetics : the official journal of the International Society for Twin Studies. 15 (3), 401-413 (2012).
  11. Derflinger, S., et al. Grey-matter atrophy in Alzheimer’s disease is asymmetric but not lateralized. Journal of Alzheimer’s disease : JAD. 25 (2), 347-357 (2011).
  12. Abdul Manan, H., Yusoff, A. N., Franz, E. A., Sarah Mukari, S. Z. Early and Late Shift of Brain Laterality in STG, HG, and Cerebellum with Normal Aging during a Short-Term Memory Task. ISRN neurology. 2013, 892072 (2013).
  13. Kim, S. G., et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science. 261 (5121), 615-617 (1993).
  14. Bartolomeo, P., D’Erme, P., Perri, R., Gainotti, G. Perception and action in hemispatial neglect. Neuropsychologia. 36 (3), 227-237 (1998).
  15. Bartolomeo, P., et al. Right-side neglect in Alzheimer’s disease. Neurology. 51 (4), 1207-1209 (1998).
  16. Thompson, P. M., et al. Tracking Alzheimer’s disease. Annals of the New York Academy of Sciences. 1097, 183-214 (2007).
  17. Cabeza, R., Anderson, N. D., Locantore, J. K., McIntosh, A. R. Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage. 17 (3), 1394-1402 (2002).
  18. Bellis, T. J., Nicol, T., Kraus, N. Aging affects hemispheric asymmetry in the neural representation of speech sounds. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 (2), 791-797 (2000).
  19. Jankowsky, J. L., et al. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomolecular engineering. 17 (6), 157-165 (2001).
  20. Venegas, C., et al. Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature. 552 (7685), 355-361 (2017).
  21. Busche, M. A., et al. Tau impairs neural circuits, dominating amyloid-beta effects, in Alzheimer models in vivo. Nat Neurosci. 22 (1), 57-64 (2019).
  22. Velazquez, R., et al. Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Molecular Psychiatry. , (2019).
  23. Huo, Q., et al. Prefrontal Cortical GABAergic Dysfunction Contributes to Aberrant UP-State Duration in APP Knockout Mice. Cerebral Cortex. 27 (8), 4060-4072 (2017).
  24. Palop, J. J., et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 55 (5), 697-711 (2007).
  25. Ang, G., et al. Absent sleep EEG spindle activity in GluA1 (Gria1) knockout mice: relevance to neuropsychiatric disorders. Translational Psychiatry. 8 (1), 154 (2018).
  26. Funk, C. M., Honjoh, S., Rodriguez, A. V., Cirelli, C., Tononi, G. Local Slow Waves in Superficial Layers of Primary Cortical Areas during REM Sleep. Current Biology. 26 (3), 396-403 (2016).
  27. Gregoriou, G. G., Gotts, S. J., Zhou, H., Desimone, R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science. 324 (5931), 1207-1210 (2009).
  28. Zheng, C., Bieri, K. W., Hsiao, Y. T., Colgin, L. L. Spatial Sequence Coding Differs during Slow and Fast Gamma Rhythms in the Hippocampus. Neuron. 89 (2), 398-408 (2016).
  29. Freeman, W. J., Holmes, M. D., West, G. A., Vanhatalo, S. Fine spatiotemporal structure of phase in human intracranial EEG. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 117 (6), 1228-1243 (2006).
  30. Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron. 88 (1), 220-235 (2015).
  31. Cardin, J. A., et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 459 (7247), 663-667 (2009).
  32. Verret, L., et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 149 (3), 708-721 (2012).
  33. Ahlbeck, J., Song, L., Chini, M., Bitzenhofer, S. H., Hanganu-Opatz, I. L. Glutamatergic drive along the septo-temporal axis of hippocampus boosts prelimbic oscillations in the neonatal mouse. Elife. 7, (2018).
  34. Spellman, T., et al. Hippocampal-prefrontal input supports spatial encoding in working memory. Nature. 522 (7556), 309-314 (2015).
  35. Vandecasteele, M., et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America. 111 (37), 13535-13540 (2014).
  36. Seidenbecher, T., Laxmi, T. R., Stork, O., Pape, H. C. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science. 301 (5634), 846-850 (2003).
  37. Zitnik, G. A., Curtis, A. L., Wood, S. K., Arner, J., Valentino, R. J. Adolescent Social Stress Produces an Enduring Activation of the Rat Locus Coeruleus and Alters its Coherence with the Prefrontal Cortex. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 41 (5), 1376-1385 (2015).
  38. Rogers, L. J., Zucca, P., Vallortigara, G. Advantages of having a lateralized brain. Proceedings. Biological sciences / The Royal Society. 271, 420-422 (2004).
  39. Vallortigara, G. The evolutionary psychology of left and right: costs and benefits of lateralization. Developmental psychobiology. 48 (6), 418-427 (2006).
  40. MacNeilage, P. F., Rogers, L. J., Vallortigara, G. Origins of the left, right brain. Scientific American. 301 (1), 60-67 (2009).
  41. Habas, P. A., et al. Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cerebral cortex. 22 (1), 13-25 (2012).
  42. Dennis, N. A., Kim, H., Cabeza, R. Effects of aging on true and false memory formation: an fMRI study. Neuropsychologia. 45 (14), 3157-3166 (2007).
  43. Cabeza, R., et al. Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral cortex. 14 (4), 364-375 (2004).
  44. Cherbuin, N., Reglade-Meslin, C., Kumar, R., Sachdev, P., Anstey, K. J. Mild Cognitive Disorders are Associated with Different Patterns of Brain asymmetry than Normal Aging: The PATH through Life Study. Frontiers in psychiatry / Frontiers Research Foundation. 1, 11 (2010).
  45. Jankowsky, J. L., et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Human molecular genetics. 13 (2), 159-170 (2004).
  46. Radde, R., et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO reports. 7 (9), 940-946 (2006).
  47. Lacor, P. N., et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 (4), 796-807 (2007).
check_url/pt/59310?article_type=t

Play Video

Citar este artigo
Chen, Y., Li, M., Zheng, Y., Yang, L. Evaluation of Hemisphere Lateralization with Bilateral Local Field Potential Recording in Secondary Motor Cortex of Mice. J. Vis. Exp. (149), e59310, doi:10.3791/59310 (2019).

View Video