Summary

使用前 Vivo 共聚焦显微镜可视化淋巴节点结构和细胞定位

Published: August 09, 2019
doi:

Summary

该协议描述了一种在不改变器官结构的情况下在排空淋巴结中成像不同细胞群的技术。

Abstract

淋巴结(LUN)是体内传播的器官,与先天免疫反应可以连接适应性免疫。事实上,LN战略性地插在淋巴血管的路径中,允许组织抗原与LN中所有常驻免疫细胞亲密接触。因此,使用外体全LN成像了解细胞组成、分布、位置和相互作用,将增进有关人体如何协调局部和全身免疫反应的知识。该协议显示了在体内给荧光标记抗体进行体内给药后,使用传统的共聚焦显微镜和库存试剂,允许非常可重复且易于执行的方法的体外成像策略。通过皮下抗体注射,可以在排空LUN中标记不同的细胞群,而不影响可能由传统免疫荧光显微镜技术破坏的组织结构。

Introduction

淋巴结 (Lun) 是卵形器官,广泛存在于全身,具有桥接先天和自适应免疫反应的关键功能。LUN过滤淋巴,以识别外来颗粒和癌细胞,以对它们进行免疫反应1。抗原呈现细胞(ApCs),T细胞和B细胞一起产生抗原特异性抗体(体液免疫)和细胞毒性淋巴细胞(细胞免疫),以消除外来颗粒和癌细胞2。因此,了解淋巴系统中免疫细胞的动态对疫苗开发和癌症免疫治疗具有重要影响。

强大的显微镜的出现-包括新的共聚焦和超分辨率显微镜-使一个非凡的进步,在理解不同的免疫细胞群体如何在他们的原生环境中如何运行3。现在,可以使用与转基因小鼠结合探针,在特定靶点4、5的控制下表达荧光蛋白,可以成像几个同时发生的细胞亚型。事实上,高维技术,包括大规模细胞学和多参数流分析,对于扩大我们对健康和疾病中不同免疫细胞的分块和功能的知识至关重要。7.然而,为了准备这些技术的样本,组织需要消化,细胞从自然环境中分离出来,在细胞悬浮液中进行分析。为了超越这些限制,并允许生物学更好的翻译,这里提出的协议的目标是应用一个简单的方法,使用库存共聚焦显微镜图像外整个淋巴结,有利于提高速度,组织与传统的免疫荧光染色相比,结构保存和细胞存活。通过这种方法,我们能够证明缺乏β-T细胞的小鼠,一种参与宿主早期防御病原体4的T淋巴细胞的亚型,与野生型小鼠相比,已经破坏了毛囊和T细胞区。这些发现使我们能够进行一项研究,其中我们证明βT细胞在淋巴器官平衡和体液免疫反应4中起关键作用。此外,该协议为探针和抗体到达淋巴结提供了一个生理途径,因为它们在原位标记使用的报告的基础上,通过组织淋巴环流进行皮下施用并消散与抗体可视化淋巴相关结构8,9, 芽中心动力学10,11,12,和目标容易进入血流13 ,14,15.

Protocol

该协议由哈佛医学院动物常设委员会和布里格姆妇女医院批准,协议2016N000230。 1. 用于实验的老鼠 在B6背景上使用8周大的雄性小鼠和雌性小鼠进行抗体混合。 使用 CX3CR1GFP/WTCCR2RFP/WT小鼠确定是否也可以将前体全 LN 成像应用于报告小鼠,而无需施用抗体混合物,并调查是否存在单核细胞,包括抗原呈现细胞和噬菌体,及其在LN中的分布。注:CX3CR1GF…

Representative Results

本手稿展示了在注射荧光标记抗体以染色这些器官的特定细胞群后,在不破坏其结构的情况下去除淋巴结的技术(图1和图2). LN细胞与BV421抗CD4和BB515抗CD19和共聚焦成像分析的免疫标记的强大组合,定义了T细胞(CD4+)和B细胞(CD19+)在铀素和波普利特LN中的定位。在两个器官中,B细胞卵泡被T细胞群包围(图3,<strong class="xfig…

Discussion

成像与其他技术(包括分子生物学和高维免疫分型)的结合增强了我们在其原生环境中研究免疫细胞的能力。事实上,虽然其他方法可能需要组织消化和细胞分离(这可能导致组织完整性的丧失),但使用体内或前体成像在以地理方式调查不同细胞亚型方面具有很大优势3,16.转基因小鼠菌株的可得性迅速增加,这种菌株专门针对细胞表达不同的荧光。重要的是,报?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH(R01 AI43458至H.L.W.)的支持。

Materials

BV421 anti-CD4 BD Horizon 562891 GK1.5; 0.2 mg mL-1
BB515 anti-CD19 BD Horizon 564509 1D3; 0.2 mg mL-1
BB515 Rat IgG2a, κ Isotype Control BD Horizon 564418 R35-95; 0.2 mg mL-1
BV421 Mouse IgG2b, K Isotype Control BD Horizon 562603 R35-38 0.2 mg mL-1
Cellview culture dish Greiner-Bio 627861 35×10 mm with glass bottom
Insulin syringes BD Plastipak Insulin U-100
Kimwipes Kimtech Science Brand 7557 size 21 x 20 cm / 100 sheets per box
Microsurgery curved forceps WEP Surgical Instruments custom made 12.5 cm
Microsurgery curved scissors WEP Surgical Instruments custom made 11.5 cm
Needle BD PrecisionGlide 30 gauge × ½ inch
Nikon Eclipse Te + A1R confocal head Nikon loaded with main 4 laser lines (405, 488, 543 and 647 nm)
PE anti-F4/80 BD Pharmigen 565410 T45-2342; 0.2 mg mL-1
PE Rat IgG2a, κ Isotype Control BD Pharmigen 553930 R35-95; 0.2 mg mL-1
Zeiss LSM 710 confocal microscope Zeiss loaded with main 4 laser lines (405, 488, 543 and 647 nm)

Referências

  1. Willard-Mack, C. L. Normal structure, function, and histology of lymph nodes. Toxicologic Pathology. 34, 409-424 (2006).
  2. Tas, J. M., et al. Visualizing antibody affinity maturation in germinal centers. Science. 351, 1048-1054 (2016).
  3. David, B. A., et al. Combination of Mass Cytometry and Imaging Analysis Reveals Origin, Location, and Functional Repopulation of Liver Myeloid Cells in Mice. Gastroenterology. 151, 1176-1191 (2016).
  4. Rezende, R. M., et al. gammadelta T cells control humoral immune response by inducing T follicular helper cell differentiation. Nature Communications. 9, 3151 (2018).
  5. Nakagaki, B. N., et al. Generation of a triple-fluorescent mouse strain allows a dynamic and spatial visualization of different liver phagocytes in vivo. Anais da Academia Brasileira de Ciencias. 91 (suppl 1), e20170317 (2019).
  6. Ajami, B., et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nature Neuroscience. 21, 541-551 (2018).
  7. Becher, B., et al. High-dimensional analysis of the murine myeloid cell system. Nature Immunology. 15, 1181-1189 (2014).
  8. McElroy, M., et al. Fluorescent LYVE-1 antibody to image dynamically lymphatic trafficking of cancer cells in vivo. Journal of Surgical Research. 151, 68-73 (2009).
  9. Gerner, M. Y., Casey, K. A., Kastenmuller, W., Germain, R. N. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. The Journal of Experimental Medicine. 214, 3105-3122 (2017).
  10. Hauser, A. E., et al. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity. 26, 655-667 (2007).
  11. Allen, C. D., Okada, T., Tang, H. L., Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science. 315, 528-531 (2007).
  12. Arnon, T. I., Horton, R. M., Grigorova, I. L., Cyster, J. G. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature. 493, 684-688 (2013).
  13. Sipkins, D. A., et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 435, 969-973 (2005).
  14. Cinamon, G., Zachariah, M. A., Lam, O. M., Foss, F. W., Cyster, J. G. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nature Immunology. 9, 54-62 (2008).
  15. Pereira, J. P., An, J., Xu, Y., Huang, Y., Cyster, J. G. Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nature Immunology. 10, 403-411 (2009).
  16. Nakagaki, B. N., et al. Immune and metabolic shifts during neonatal development reprogram liver identity and function. Journal of Hepatology. (6), 1294-1307 (2018).
  17. Wang, H., La Russa, M., Qi, L. S. CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry. 85, 227-264 (2016).
  18. Roozendaal, R., et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity. 30, 264-276 (2009).
  19. Sarder, P., et al. All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes. Journal of Biomedical Optics. 18, 106012 (2013).
check_url/pt/59335?article_type=t

Play Video

Citar este artigo
Rezende, R. M., Lopes, M. E., Menezes, G. B., Weiner, H. L. Visualizing Lymph Node Structure and Cellular Localization using Ex-Vivo Confocal Microscopy. J. Vis. Exp. (150), e59335, doi:10.3791/59335 (2019).

View Video