Summary

Визуализация структуры лимфатических узлов и клеточной локализации с помощью ex-Vivo Confocal Микроскопии

Published: August 09, 2019
doi:

Summary

Этот протокол описывает метод изображения различных популяций клеток в осушении лимфатических узлов без изменений в структуре органа.

Abstract

Лимфатические узлы (LNs) являются органами, распространяемыми внутри организма, где врожденные иммунные реакции могут соединиться с адаптивным иммунитетом. В самом деле, LNs стратегически вмешались в пути лимфатических сосудов, что позволяет интимный контакт тканевых антигенов со всеми резидентами иммунных клеток в LN. Таким образом, понимание клеточного состава, распределения, местоположения и взаимодействия с помощью ex vivo всего LN изображений будет добавить к знаниям о том, как тело координирует местные и системные иммунные реакции. Этот протокол показывает стратегию визуализации ex vivo после введения виво флуоресцентных антител с меткой, что позволяет очень воспроизводимую и простую в выполнении методологии с помощью обычных конфокальных микроскопов и фондовых реагентов. С помощью подкожной инъекции антител, можно маркировать различные популяции клеток в слива ЛН, не влияя на структуры тканей, которые могут быть потенциально повреждены с помощью обычной иммунофлуоресцентной микроскопии техники.

Introduction

Лимфатические узлы (LNs) являются яйцевидными органами, широко присутствующими по всему телу с важнейшей функцией преодоления врожденных и адаптивных иммунных реакций. LNs фильтруют лимфу для того, чтобы определить посторонние частицы и раковые клетки, чтобы смонтировать иммунный ответ против них1. Антиген, представляющий клетки (APCs), Т-клетки и В-клетки работают вместе с генерацией антиген-специфических антител (гуморальный иммунитет) и цитотоксических лимфоцитов (клеточный иммунитет) для устранения посторонних частиц и раковых клеток2. Таким образом, понимание динамики иммунных клеток, присутствующих в лимфатической системе, будет иметь важные последствия для разработки вакцины и иммунотерапии рака.

Появление мощных микроскопов – в том числе новых конфокальных и супер разрешение микроскопов – позволило чрезвычайный прогресс в понимании того, как различные популяции иммунных клеток ведут себя в их родной среде3. Теперь можно изображение нескольких одновременных подтипов клеток с помощью комбинации зондов с генетически модифицированными мышами, которые выражают флуоресцентные белки под контролем конкретных целей4,5. В самом деле, высокомерные методы, в том числе массовой цитометрии и мульти-параметрического анализа потока имеют решающее значение для расширения наших знаний о различных иммунных клеток разобщенности и функциональности в области здоровья и болезни6, 7. Однако, для подготовки образцов для этих методов, ткани нуждаются в пищеварении и клетки отделены от их естественной среде для анализа в клеточных суспензий. Чтобы превзойти эти ограничения и позволить лучший перевод в биологии, цель протокола, предложенного здесь, заключается в применении простой методологии изображения ex vivo целые лимфатические узлы с помощью фондовых конфокальных микроскопов с преимуществом улучшенной скорости, ткани сохранение структуры, и жизнеспособность клеток по сравнению с обычными иммунофлуоресцентными окрашивания. Используя этот подход, мы смогли показать, что мыши не хватает для Т-клеток, подтип Т-лимфоцитов, участвующих в принимающей ранней защиты от патогенов4, имеют скомпрометированы фолликулов и Т-клеточных зон по сравнению с дикими мышами типа. Эти выводы позволили нам продолжить исследование, в котором мы показали, что Т-клетки играют важную роль в гомеостазе лимфоидных органов и гуморальный иммунный ответ4. Кроме того, этот протокол обеспечивает физиологические пути для зондов и антител для достижения лимфатических узлов, так как они управляются подкожно и рассеивать через ткани лимфатической циркуляции, опираясь на предыдущие доклады, которые используются в situ маркировки с антителами для визуализации лимфатических ассоциированных структур8,9, динамика зародышевого центра10,11,12,и цели легко доступны для кровотока13 ,14,15.

Protocol

Протокол был одобрен Постоянным комитетом по животным гарвардской медицинской школы и Бригамской женской больницы, протокол 2016N000230. 1. Мыши, используемые для эксперимента Используйте 8-недельных мышей мужского и женского пола на фоне B6 для администрирования смеси а…

Representative Results

Данная рукопись показывает методы удаления паховых и поплитетовых лимфатических узлов, не повреждая их структуру после инъекции флуоресцентных антител для окрашивания конкретных клеточных популяций в этих органах (Рисунок 1 и Рисунок 2 ). <p class="jove_content…

Discussion

Сочетание изображений с другими методами, включая молекулярную биологию и высокомерную иммунофенотипирование, повысило нашу способность исследовать иммунные клетки в их родном контексте. В самом деле, в то время как другие подходы могут потребовать переваривания тканей и изоляции кл…

Declarações

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана NIH (R01 AI43458 в H.L.W.).

Materials

BV421 anti-CD4 BD Horizon 562891 GK1.5; 0.2 mg mL-1
BB515 anti-CD19 BD Horizon 564509 1D3; 0.2 mg mL-1
BB515 Rat IgG2a, κ Isotype Control BD Horizon 564418 R35-95; 0.2 mg mL-1
BV421 Mouse IgG2b, K Isotype Control BD Horizon 562603 R35-38 0.2 mg mL-1
Cellview culture dish Greiner-Bio 627861 35×10 mm with glass bottom
Insulin syringes BD Plastipak Insulin U-100
Kimwipes Kimtech Science Brand 7557 size 21 x 20 cm / 100 sheets per box
Microsurgery curved forceps WEP Surgical Instruments custom made 12.5 cm
Microsurgery curved scissors WEP Surgical Instruments custom made 11.5 cm
Needle BD PrecisionGlide 30 gauge × ½ inch
Nikon Eclipse Te + A1R confocal head Nikon loaded with main 4 laser lines (405, 488, 543 and 647 nm)
PE anti-F4/80 BD Pharmigen 565410 T45-2342; 0.2 mg mL-1
PE Rat IgG2a, κ Isotype Control BD Pharmigen 553930 R35-95; 0.2 mg mL-1
Zeiss LSM 710 confocal microscope Zeiss loaded with main 4 laser lines (405, 488, 543 and 647 nm)

Referências

  1. Willard-Mack, C. L. Normal structure, function, and histology of lymph nodes. Toxicologic Pathology. 34, 409-424 (2006).
  2. Tas, J. M., et al. Visualizing antibody affinity maturation in germinal centers. Science. 351, 1048-1054 (2016).
  3. David, B. A., et al. Combination of Mass Cytometry and Imaging Analysis Reveals Origin, Location, and Functional Repopulation of Liver Myeloid Cells in Mice. Gastroenterology. 151, 1176-1191 (2016).
  4. Rezende, R. M., et al. gammadelta T cells control humoral immune response by inducing T follicular helper cell differentiation. Nature Communications. 9, 3151 (2018).
  5. Nakagaki, B. N., et al. Generation of a triple-fluorescent mouse strain allows a dynamic and spatial visualization of different liver phagocytes in vivo. Anais da Academia Brasileira de Ciencias. 91 (suppl 1), e20170317 (2019).
  6. Ajami, B., et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nature Neuroscience. 21, 541-551 (2018).
  7. Becher, B., et al. High-dimensional analysis of the murine myeloid cell system. Nature Immunology. 15, 1181-1189 (2014).
  8. McElroy, M., et al. Fluorescent LYVE-1 antibody to image dynamically lymphatic trafficking of cancer cells in vivo. Journal of Surgical Research. 151, 68-73 (2009).
  9. Gerner, M. Y., Casey, K. A., Kastenmuller, W., Germain, R. N. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. The Journal of Experimental Medicine. 214, 3105-3122 (2017).
  10. Hauser, A. E., et al. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity. 26, 655-667 (2007).
  11. Allen, C. D., Okada, T., Tang, H. L., Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science. 315, 528-531 (2007).
  12. Arnon, T. I., Horton, R. M., Grigorova, I. L., Cyster, J. G. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature. 493, 684-688 (2013).
  13. Sipkins, D. A., et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 435, 969-973 (2005).
  14. Cinamon, G., Zachariah, M. A., Lam, O. M., Foss, F. W., Cyster, J. G. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nature Immunology. 9, 54-62 (2008).
  15. Pereira, J. P., An, J., Xu, Y., Huang, Y., Cyster, J. G. Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nature Immunology. 10, 403-411 (2009).
  16. Nakagaki, B. N., et al. Immune and metabolic shifts during neonatal development reprogram liver identity and function. Journal of Hepatology. (6), 1294-1307 (2018).
  17. Wang, H., La Russa, M., Qi, L. S. CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry. 85, 227-264 (2016).
  18. Roozendaal, R., et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity. 30, 264-276 (2009).
  19. Sarder, P., et al. All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes. Journal of Biomedical Optics. 18, 106012 (2013).
check_url/pt/59335?article_type=t

Play Video

Citar este artigo
Rezende, R. M., Lopes, M. E., Menezes, G. B., Weiner, H. L. Visualizing Lymph Node Structure and Cellular Localization using Ex-Vivo Confocal Microscopy. J. Vis. Exp. (150), e59335, doi:10.3791/59335 (2019).

View Video