Summary

木尿造血干细胞和祖细胞和MLL-AF9驱动白血病线粒体反应氧物种的流细胞学分析

Published: September 05, 2019
doi:

Summary

我们描述了一种使用多参数流细胞测定法来检测小鼠健康造血干细胞和祖细胞(HSPCs)中的线粒体活性氧物种(ROS)和白血病细胞的方法,这些细胞来自急性骨髓性白血病(AML)的小鼠模型。MLL-AF9。

Abstract

我们提出了一种流式细胞学方法,用于分析健康小鼠以及MLL-AF9驱动的AML小鼠的各种活骨髓(BM)衍生干细胞和祖细胞群中的线粒体ROS。具体来说,我们描述了一个两步细胞染色过程,其中健康或白血病BM细胞首先用荧光染料染色,检测线粒体超氧化物,然后染色与氟铬链接单克隆抗体使用区分各种健康和恶性造血祖群。我们还提供了一个通过流式细胞测定采集和分析样品的策略。整个协议可以在3-4小时的时间内执行。我们还强调了要考虑的关键变量,以及监测活造血干细胞和白血病茎线粒体中ROS生产的优点和局限性,并使用流式细胞测定的氟原染料进行祖生子种群.此外,我们提供的数据,线粒体ROS丰度在不同的健康HSPC亚群体和白血病祖细胞之间变化,并讨论了该技术在血液学研究的可能应用。

Introduction

活性氧物种(ROS)是从分子氧中提取的高度活性分子。ROS生产最明确的细胞位置是线粒体,在氧化磷酸化(OXPHOS)期间通过电子传输链(ETC)的电子被分子氧吸收,从而形成特定的ROS类型称为超氧化物1。通过一系列酶(称为超氧化物歧化酶或SOD)的作用,超氧化物转化为过氧化氢,随后通过催化酶或谷胱甘肽过氧化物酶(GPX)等酶中和成水。ROS 调节机制中的扰动可导致 ROS 的过量生产,通常称为氧化应激,具有有害且潜在的致命细胞后果,如大分子损伤(即 DNA、蛋白质、脂质)。此外,氧化应激与多种疾病有关,如糖尿病、炎症性疾病、衰老和肿瘤2、3、4。为了保持氧化平衡和防止氧化应激,细胞拥有各种ROS调节机制5。

某些ROS的生理水平是必要的适当的胚胎和成人造核6。然而,过量的ROS与DNA损伤、细胞分化和造血干细胞和祖细胞池的衰竭有关。也有证据显示,在白血病和健康细胞之间,氧化还原生物学的改变可能有所不同。例如,在急性骨髓性白血病(AML)细胞中,ROS水平往往高于其健康细胞,其他研究表明,白血病干细胞维持低稳态的ROS水平,以生存7,8。重要的是,利用这些氧化还原差异的治疗策略在几个人类癌症环境中显示出了希望9,10。因此,允许评估小鼠模型中ROS水平的检测可以增进我们对这些物种如何促进细胞生理学和疾病发病机制的理解,并可能为评估新型氧化还原靶向抗癌疗法。

Protocol

本议定书中描述的所有动物程序均已获得福克斯大通癌症中心机构动物护理和使用委员会(IACUC)的批准。 注:协议工作流程分为4个部分,如图1所示,所需试剂列在材料表中。 1. 骨髓 (BM) 隔离 注:MLL-AF9白血病小鼠的产生,如前11所述。 如前<su…

Representative Results

提出了一种分析多个健康型和MLL-AF9表达性白血病祖体群线粒体ROS的方法。图 1显示了协议工作流的原理图视图,该视图由 4 个主要步骤组成:1) BM 与小鼠分离;2) 用能识别线粒体ROS的荧光染料染色BM细胞,特别是超氧化物;3) 表面标记抗体染色,以划定各种健康和白血病造血人群;4) 流式细胞学采集和分析。 图 2A,B?…

Discussion

为检测ROS而开发的荧光染料,经常通过显微镜或流式细胞22在固定细胞中进行评估。使用线粒体ROS氟致染料对BM细胞中线粒体ROS进行流式细胞测量具有两个主要优点:1)它是一种快速简便的技术,适合活细胞分析;2)它允许区分和分析罕见使用表面标记染色在BM的单细胞水平上。此处介绍的分步协议旨在研究两只健康小鼠的造血干细胞和祖体种群的活体氧化还原状态,以及?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了福克斯大通癌症中心董事会(DDM)、美国血液学学会学者奖(SMS)、美国癌症协会RSG(SMS)和国防部的支持(奖状:W81XWH-18-1-0472)。

Materials

Heat inactivated FBS VWR Seradigm LIFE SCIENCE 97068-085 Media
Penicillin Streptomycin Corning 30-002-CI Media
PBS Fisher Scientific BP399-20 Buffer
15 mL conical tube BD falcon 352096 Tissue Culture Supplies
50 mL conical tube BD falcon 352098 Tissue Culture Supplies
40 μm cell strainers Fisher Scientific 22-363-547 Tissue Culture Supplies
RBC Lysis Buffer Fisher Scientific 50-112-9751 Tissue Culture Supplies
Menadione sodium Bisulfite Sigma aldrich M5750 Pro-oxidant
NAC Sigma aldrich A7250 Anti-oxidant
CD3 PE-Cy5 clone 145-2c11 Biolegend 100310 Antibody
CD4 PE-Cy5 clone RM4-5 eBioscience 15-0041-81 Antibody
CD8 PE-Cy5 clone 53-6.7 eBioscience 15-0081-81 Antibody
CD19 PE-Cy5 clone 6D5 Biolegend 115510 Antibody
B220 PE-Cy5 clone RA3-6B2 Biolegend 103210 Antibody
Gr1 PE-Cy5 clone RB6-8C5 Biolegend 108410 Antibody
Ter119 PE-Cy5 clone Ter-119 Biolegend 116210 Antibody
CD48 PE-Cy5 clone HM48-1 Biolegend 103420 Antibody
CD117  APC-Cy7 clone 2B8 Biolegend 105825 Antibody
Sca1 peacific Blue clone D7 Biolegend 108120 Antibody
CD150 APC clone TC15-12F12.2 Biolegend 115909 Antibody
CD34 FITC clone RAM34 BD Bioscience 553733 Antibody
CD45.2 APC clone 104 Biolegend 1098313 Antibody
MitoSOX Red ThermoFisher Scientific M36008 Dye
Mitotracker Green ThermoFisher Scientific M7514 Dye
Live/dead Yellow Dye ThermoFisher Scientific L34967 Dye

Referências

  1. Dröse, S., Brandt, U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Advances in experimental medicine and biology. 748, 145-169 (2012).
  2. Gerber, P. A., Rutter, G. A. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxidant & Redox Signaling. 26 (10), 501-518 (2017).
  3. Höhn, A., et al. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biology. 11, 482-501 (2017).
  4. Reuter, S., Gupta, S. C., Chaturvedi, M. M., Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked. Free Radical Biology & Medicine. 49 (11), 1603-1616 (2010).
  5. Lee, B. W. L., Ghode, P., Ong, D. S. T. Redox regulation of cell state and fate. Redox Biology. 2213-2317 (18), 30899 (2018).
  6. Harris, J. M., et al. Glucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction in vivo. Blood. 121, 2483-2493 (2013).
  7. Hole, P. S., Darley, R. L., Tonks, A. Do reactive oxygen species play a role in myeloid leukemias. Blood. 117, 5816-5826 (2011).
  8. Lagadinou, E. D., et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 12 (3), 329-341 (2013).
  9. Di Marcantonio, D., et al. Protein Kinase C Epsilon Is a Key Regulator of Mitochondrial Redox Homeostasis in Acute Myeloid Leukemia. Clinical Cancer Research. 24 (3), 608-618 (2018).
  10. Glasauer, A., Chandel, N. S. Targeting antioxidants for cancer therapy. Biochemical Pharmacology. 92 (1), 90-101 (2014).
  11. Krivtsov, A. V., et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 442 (7104), 818-822 (2006).
  12. Frascoli, M., Proietti, M., Grassi, F. Phenotypic analysis and isolation of murine hematopoietic stem cells and lineage-committed progenitors. Journal of Visualized Experiments. (65), (2012).
  13. Lo Celso, C., Scadden, D. T. Isolation and transplantation of hematopoietic stem cells (HSCs). Journal of Visualized Experiments. (157), (2007).
  14. Kalaitzidis, D., et al. mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell. 11 (3), 429-439 (2012).
  15. Sykes, S. M., et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell. 146 (5), 697-708 (2011).
  16. Kalaitzidis, D., Neel, B. G. Flow-cytometric phosphoprotein analysis reveals agonist and temporal differences in responses of murine hematopoietic stem/progenitor cells. PLoS One. 3 (11), 3776 (2008).
  17. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 121 (7), 1109-1121 (2005).
  18. Mooney, C. J., Cunningham, A., Tsapogas, P., Toellner, K. M., Brown, G. Selective expression of flt3 within the mouse hematopoietic stem cell compartment. International Journal Molecular Sciences. 18 (5), (2017).
  19. Oguro, H., Ding, L., Morrison, S. I. SLAM family markers resolve functional distinct sub-populations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell. 13 (1), 102-116 (2013).
  20. Osawa, M., Hanada, K., Hamada, H., Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 273 (5272), 242-245 (1996).
  21. Morita, Y., Ema, H., Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. Journal of Experimental Medicine. 207 (6), 1173-1178 (2010).
  22. Mukhopadhyay, P., Rajesh, M., Haskó, G., Hawkins, B. J., Madesh, M., Pacher, P. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nature Protocols. 2 (9), 2295-2301 (2007).
  23. Camargo, F. D., Chambers, S. M., Drew, E., McNagny, K. M., Goodell, M. A. Hematopoietic stem cells do not engraft with absolute efficiencies. Blood. 107 (2), 501-507 (2006).
  24. Morita, Y., Ema, H., Yamazaki, S., Nakauchi, H. Non-side-population hematopoietic stem cells in mouse bone marrow. Blood. 108 (8), 2850-2856 (2006).
  25. de Almeida, M. J., Luchsinger, L. L., Corrigan, D. J., Williams, L. J., Snoeck, H. W. Dye-Independent Methods Reveal Elevated Mitochondrial Mass in Hematopoietic Stem Cells. Cell Stem Cell. 21 (6), 725-729 (2017).
  26. Bonora, M., Ito, K., Morganti, C., Pinton, P., Ito, K. Membrane-potential compensation reveals mitochondrial volume expansion during HSC commitment. Experimental Hematology. 68, 30-37 (2018).
  27. Somervaille, T. C., Cleary, M. L. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 10 (4), 257-268 (2006).
  28. Hao, X., et al. Metabolic Imaging Reveals a Unique Preference of Symmetric Cell Division and Homing of Leukemia-Initiating Cells in an Endosteal Niche. Cell Metabolism. 29 (4), 950-965 (2019).
check_url/pt/59593?article_type=t

Play Video

Citar este artigo
Di Marcantonio, D., Sykes, S. M. Flow Cytometric Analysis of Mitochondrial Reactive Oxygen Species in Murine Hematopoietic Stem and Progenitor Cells and MLL-AF9 Driven Leukemia. J. Vis. Exp. (151), e59593, doi:10.3791/59593 (2019).

View Video