Summary

一种冷冻-解冻方法,用于制备奇托桑-波里(乙烯基酒精)水凝胶,无交联剂和二分释放研究

Published: January 14, 2020
doi:

Summary

冷冻解冻法用于生产无交联剂的甲苯-聚(乙烯醇)水凝胶。对于此方法,必须考虑冻结条件(温度、周期数)和聚合物比,这可能会影响获得的水凝胶的性能和应用。

Abstract

赤酸多聚(乙烯醇)水凝胶可以通过冷冻解冻方法生产,而无需使用有毒交联剂。这些系统的应用受到其特性(例如孔隙度、灵活性、膨胀能力、药物装载和药物释放能力)的限制,这些特性取决于冻结条件以及聚合物的种类和比例。该协议描述了如何在聚合物成分的50/50 w/w%下制备来自甲酸和聚物(乙烯基醇)的水凝胶,并改变冷冻温度(-4°C,-20°C,-80°C)和冷冻解冻周期(4,5,6冷冻周期)。获得了FT-IR光谱、SEM显微图和水凝胶孔隙学数据。此外,还评估了二丁二药的膨胀能力和药物负荷和释放。SEM显微图和孔隙学的结果表明,孔隙尺寸减小,而孔隙度在较低温度下增加。在轻微的冰冻温度下,肿胀百分比较高。研究了水凝胶中二氧化二的释放。所有网络保持药物释放30小时,并已观察到,一个简单的扩散机制调节二次释放根据Korsmeyer-Peppas和Higuchi模型。

Introduction

近年来,水凝胶在生物医学领域引起了极大的兴趣,因为它们是三维网络,含水量高,柔软灵活,因此很容易模仿天然组织。此外,它们不会在生理温度和pH下溶解在水介质中,但存在大肿胀2。水凝胶可以作为组织工程支架、卫生用品、隐形眼镜和伤口敷料;因为它们可以捕获和释放活性化合物和药物,它们被用作药物输送系统3。根据其应用,水凝胶可以由天然或合成聚合物制成,或两者兼而有之,以获得最佳特性4。

水凝胶的特性是许多物理和化学因素的结果。在物理层面上,它们的结构和形态取决于它们的孔隙度、孔径和孔隙分布5。在化学和分子水平上,聚合物类型、聚合物链中的亲水组含量、交联点类型和交联密度是决定膨胀能力和机械性能的因素6、7。

根据形成网络的交联剂的类型,水凝胶被归类为化学水凝胶或物理水凝胶。化学水凝胶由其链之间的共价相互作用连接,通过紫外线和伽马辐照或使用交联剂7,8形成。化学水凝胶通常具有强和耐受性,但一般来说,交联剂对细胞有毒,其去除难度大,因此应用有限。另一方面,物理水凝胶通过非共价相互作用与聚合物链的连接形成,避免使用交联剂4、9。网络中的主要非共价相互作用是疏水性相互作用、静电力、互补和氢边界7。

聚(乙烯醇)(PVA,1a)是一种合成和水溶性聚合物,具有优异的机械性能和生物相容性,可以通过无冻融剂水凝胶通过冷冻解冻方法10、11。这种聚合物在冻结12时,能够在其链的-OH组(晶体区)之间形成氢键的集中区。这些晶体区作为网络中的交联点,由两个事件促进:当晶体水膨胀时聚合物链的接近和PVA在冻结13期间从等位化到合成性PVA的变化。由于冷冻干燥,水晶体被升华,留下空隙,即水凝胶14的孔隙。为了获得性能更好的水凝胶,PVA 可以很容易地与其他聚合物结合使用。

从这个意义上说,甲氧基是一种选择,因为它是天然来源中唯一具有正电荷的生物聚合物。它通过甲壳素的脱氧乙酰化获得,它由β-1,4链接D-葡萄糖胺(脱乙酰化单位)和N-乙酰D-葡萄糖胺(乙酰化单位)随机组合组成(1b)。基托桑是可生物降解的人类酶,它是生物相容性。此外,由于其阳离子性质,它可以与细胞表面的负电荷相互作用,并且这个特性已经与其抗菌活性17相关。这种聚合物易于加工;然而,它们的机械性能是不够的,一些材料被添加成具有更好特性的复合物。

考虑到甲酸和PVA的具体特性,通过冷冻解冻方法2、18成功地制造了水凝胶,避免了有毒交联剂的使用。在甲酸-PVA水凝胶中,也形成PVA的结晶区,并相互渗透,与PVA中的-NH2组和-OH组形成简单的氢键。最终甲酸-PVA水凝胶机械稳定,高膨胀率和低毒性,具有抗菌效果18。但是,根据制备中使用的冻结条件(温度、时间和周期数),最终特征可能会发生变化。一些研究报告说,增加冷冻周期的数量减少肿胀程度,增加拉伸强度19,20。为了加强网络,其他制剂,如伽马和紫外线辐射和化学交联剂已额外使用冷冻解冻制剂21,22,23。具有较高甲酸比例的氢凝胶具有较多的孔网络和高膨胀能力,但强度和热稳定性较低。在这方面,必须考虑制备条件,以获得适合其目标应用的水凝胶。

这项工作的目的是详细介绍冻结条件(冻结温度和周期数)如何影响CS-PVA水凝胶的最终特性。评估了FT-IR光谱、形态和孔隙特性和膨胀能力,以及药物装载和释放能力。在释放研究中,由于其大小适合水凝胶结构,因此用作模型药物(图1c)。

Protocol

1. 甲酸-PVA水凝胶的制备 准备 2% (w/w) 千叶和 10% (w/w) PVA 解决方案。在室温下将0.2克甲釜醇溶解在10mL的0.1M CH3COOH溶液(以前过滤)中,并在一夜之间保持连续的机械搅拌。将1克PVA溶解在10 mL蒸馏水中,在80°C搅拌1小时。 使用磁性搅拌器将两种溶液1:1混合,直到在室温下均匀,并将混合物倒在培养皿上。将样品在大气压力下离开2小时,以脱气。 将水凝胶冷冻至…

Representative Results

水凝胶制备在-4°C、-20°C和-80°C下获得基托桑-PVA水凝胶,4个冷冻周期,在-80°C,通过先前报告的冷冻解冻方法2,在-80°C下获得5和6个冷冻周期。所有水凝胶均质、半透明、灵活且耐操作。 FT-IR 特性FT-IR光谱如图2所示。检测到七种基托桑和PVA聚合物的特征?…

Discussion

冷冻解冻方法是一种合适的工艺,用于制备生物相容性水凝胶,主要应用于生物医学、制药或化妆品应用34、35、36。与其他众所周知的制备水凝胶的方法相比,这种方法最重要的优点是避免使用交联剂,这可能导致炎症反应或对人体产生不良影响34。这是一种通用的方法,因为它提供了从PVA或其混合物中制备?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢C.Luzuriaga在孔隙测量中给予的支持。作者还感谢西班牙经济与竞争部长的财政支持(MAT2014-59116-C2-2-R)和PIUNA(参考2018-15)。作者还感谢来自菲西卡-UNISON的Amir Maldonado博士的支持和有益的评论,以及DIPM-UNISON的SE Burruel-Ibarra博士为SEM图像和Rubio Pharmaand A.A.C.V.提供财政支助。ME Martínez-Barbosa 感谢国家委员会(墨西哥)第104931号项目和256753号项目,此外,还感谢国家红十字会的财政支助。并且,还投影了 USO316001081。MD菲格罗亚-皮扎诺感谢国家委员会提供财政支助(奖学金373321)。

Materials

Materials:
Chitosan medium molecular weight Sigma-Aldrich 448877 Mw determined by capillary viscometry (637,000 Da) and deacetylation degree of 70%
Diflunisal (2'-4'-difluoro-4-hydroxy-3-biphenyl-carboxylicacid) Merck
Glacial acetic acid Sigma-Aldrich 1005706
Poly(vinyl alcohol) Sigma-Aldrich 341584 Mw 89,000-98,000, 99+% hydrolyzed
Equipment:
Cressington Sputter Coater 108 auto TED PELLA INC
Cryodos Lyophilizator Telstar
Falcon tubes Thermo Fisher Company
FT-IR spectroscopy Nicolet iS50 in ATR mode
Lyophilizator LABCONCO
Micromeritics Autopore IV 9500 Micromeritics
Scanning electron microscope Pemtron SS-300LV
UV-visible spectrophotometer Agilent 8453

Referências

  1. Gyles, D. A., Castro, L. D., Silva, J. O. C., Ribeiro-Costa, R. M. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. European Polymer Journal. 88 (01), 373-392 (2017).
  2. Abdel-Mohsen, a. M., Aly, a. S., Hrdina, R., Montaser, a. S., Hebeish, a. Eco-Synthesis of PVA/Chitosan Hydrogels for Biomedical Application. Journal of Polymers and the Environment. 19, 1005-1012 (2011).
  3. Caló, E., Khutoryanskiy, V. V. Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal. 65, 252-267 (2015).
  4. Ahmadi, F., Oveisi, Z., Samani, M., Amoozgar, Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Research in Pharmaceutical Sciences. 10 (1), 1-16 (2015).
  5. Siepmann, J., Siegel, R. A., Rathbone, M. J. Fundamentals and applications of controlled release drug delivery. Fundamentals and Applications of Controlled Release Drug Delivery. , (2012).
  6. Gulrez, S. K. H., Al-Assaf, S., Phillips, O. G. Hydrogels: Methods of Preparation, Characterisation and Applications. Progress in Molecular and Environmental Bioengineering – From Analysis and Modeling to Technology Applications. , 117-146 (2011).
  7. Ahmed, E. M. Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research. 6 (2), 105-121 (2015).
  8. Deligkaris, K., Tadele, T. S., Olthuis, W., van den Berg, A. Hydrogel-based devices for biomedical applications. Sensors and Actuators, B: Chemical. 147 (2), 765-774 (2010).
  9. Patel, A., Mequanint, K. Hydrogel Biomaterials. Biomedical Engineering – Frontiers and Challenges. , 275-296 (2012).
  10. Kenawy, E., Kamoun, E. A., El-meligy, M. A., Mohy, M. S. Physically crosslinked poly ( vinyl alcohol ) – hydroxyethyl starch blend hydrogel membranes Synthesis and characterization for biomedical applications. Arabian Journal of Chemistry. 7 (3), 372-380 (2014).
  11. Kamoun, E. A., Kenawy, E. R. S., Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research. 8 (3), 217-233 (2017).
  12. Hassan, C. M., Peppas, N. A. Structure and Morphology of Freeze / Thawed PVA Hydrogels. Macromolecules. 33, 2472-2479 (2000).
  13. Tsou, Y. H., Khoneisser, J., Huang, P. C., Xu, X. Hydrogel as a bioactive material to regulate stem cell fate. Bioactive Materials. 1 (1), 39-55 (2016).
  14. Kumar, A., Mishra, R., Reinwald, Y., Bhat, S. Cryogels: Freezing unveiled by thawing. Materials Today. 13 (11), 42-44 (2010).
  15. Wu, T., Li, Y., Lee, D. S. Chitosan-based composite hydrogels for biomedical applications. Macromolecular Research. 25 (6), 480-488 (2017).
  16. Dutta, P. K., Dutta, J., Tripathi, V. S. Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific and Industrial Research. 63, 20-31 (2004).
  17. Szymańska, E., Winnicka, K. Stability of Chitosan—A Challenge for Pharmaceutical and Biomedical Applications. Marine Drugs. 13, 1819-1846 (2015).
  18. Yang, X., Liu, Q., Chen, X., Yu, F., Zhu, Z. Investigation of PVA/ws-chitosan hydrogels prepared by combined gamma-irradiation and freeze-thawing. Carbohydrate Polymers. 73 (3), 401-408 (2008).
  19. Mathews, D. T., Birbey, Y. A., Cahill, P. A., McGuinness, G. B. Mechanical and Morphological Characteristics of Poly(vinyl alcohol)/Chitosan Hydrogels. Journal of Applied Polymer Science. 109, 1129-1137 (2008).
  20. Hosseini, M. S., Amjadi, I., Haghighipour, N. Preparation of Poly(vinyl alcohol)/Chitosan-Blended Hydrogels: Properties, in Vitro Studies and Kinetic Evaluation. Journal of Biomimetics, Biomaterials, and Tissue Engineering. 15, 63-72 (2012).
  21. Afshari, M. J., Sheikh, N., Afarideh, H. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing. Radiation Physics and Chemistry. 113, 28-35 (2015).
  22. Agnihotri, S., Mukherji, S. S., Mukherji, S. S. Antimicrobial chitosan-PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Applied Nanoscience. 2 (3), 179-188 (2012).
  23. Yang, X., et al. Cytotoxicity and wound healing properties of PVA/ws-chitosan/glycerol hydrogels made by irradiation followed by freeze-thawing. Radiation Physics and Chemistry. 79 (5), 606-611 (2010).
  24. Machín, R., Isasi, J. R., Vélaz, I. Hydrogel matrices containing single and mixed natural cyclodextrins. Mechanisms of drug release. European Polymer Journal. 49 (12), 3912-3920 (2013).
  25. Ritger, P. L., Peppas, N. A. A Simple Equation for Description of Solute Release. Journal of Controlled Release. 5, 37-42 (1987).
  26. Abureesh, M. A., Oladipo, A. A., Gazi, M. Facile synthesis of glucose-sensitive chitosan-poly(vinyl alcohol) hydrogel: Drug release optimization and swelling properties. International Journal of Biological Macromolecules. 90, 75-80 (2016).
  27. Mansur, H. S., Sadahira, C. M., Souza, A. N., Mansur, A. A. P. FTIR spectroscopy characterization of Poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C. 28 (4), 539-548 (2008).
  28. Parida, U. K., Nayak, A. K., Binhani, B. K., Nayak, P. L. Synthesis and Characterization of Chitosan-Polyvinyl Alcohol Blended with Cloisite 30B for Controlled Release of the Anticancer Drug Curcumin. Journal of Biomaterials and Nanobiotechnology. 02 (04), 414-425 (2011).
  29. Zu, Y., et al. Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. International Journal of Biological Macromolecules. 50 (1), 82-87 (2012).
  30. Lejardi, A., Hernández, R., Criado, M., Santos, J. I., Etxeberria, A., Sarasua, J. R. Novel hydrogels of chitosan and poly ( vinyl alcohol ) -g-glycolic acid copolymer with enhanced rheological properties. Carbohydrate Polymers. , 267-273 (2014).
  31. dos Reis, E. F., et al. Synthesis and characterization of Poly(vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Materials Research. 9 (2), 185-191 (2006).
  32. Thanyacharoen, T., Chuysinuan, P., Techasakul, S., Nooeaid, P., Ummartyotin, S. Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: Release characteristics and antioxidant activity. International Journal of Biological Macromolecules. 107, 363-370 (2018).
  33. Lozinsky, V. I., et al. Polymeric cryogels as promising materials of biotechnological interest. Trends in Biotechnology. 21 (10), 445-451 (2003).
  34. Liu, Y., Vrana, N. E., Cahill, P. A., McGuinness, G. B. Physically crosslinked composite hydrogels of PVA with natural macromolecules: Structure, mechanical properties, and endothelial cell compatibility. Journal of Biomedical Materials Research – Part B Applied Biomaterials. 90 (2), 492-502 (2009).
  35. Yang, W., et al. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydrate Polymers. 181 (August 2017), 275-284 (2018).
  36. Park, H., Kim, D. Swelling and mechanical properties of glycol chitosan/poly(vinyl alcohol) IPN-type superporous hydrogels. Journal of Biomedical Materials Research Part A. 78 (4), 662-667 (2006).
  37. Zhang, H., Zhang, F., Wu, J. Physically crosslinked hydrogels from polysaccharides prepared by freeze-thaw technique. Reactive and Functional Polymers. 73 (7), 923-928 (2013).
  38. Hassan, C. M., Peppas, N. A. Structure and Applications of Poly ( vinyl alcohol ) Hydrogels Produced by Conventional Crosslinking or by Freezing / Thawing Methods. Advances in Polymer Science. 153, 37-65 (2000).
  39. Sung, J. H., et al. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. International Journal of Pharmaceutics. 392 (1-2), 232-240 (2010).
  40. Lin, C. C., Metters, A. T. Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews. 58 (12-13), 1379-1408 (2006).
  41. Fan, L., Yang, H., Yang, J., Peng, M., Hu, J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydrate Polymers. 146, 427-434 (2016).
  42. Islam, A., et al. Evaluation of selected properties of biocompatible chitosan / poly ( vinyl alcohol) blends. International Journal of Biological Macromolecules. 82, 551-556 (2016).
  43. Physical Montaser, A. S. mechanical and antimicrobial evaluations of physically crosslinked PVA/chitosan hydrogels containing nanoparticles. Journal of Applied Pharmaceutical Science. 6 (5), 1-6 (2016).
  44. Hou, Y., Chen, C., Liu, K., Tu, Y., Zhang, L., Li, Y. Preparation of PVA hydrogel with high-transparence and investigations of its transparent mechanism. RSC Advances. 5 (31), 24023-24030 (2015).

Play Video

Citar este artigo
Figueroa-Pizano, M. D., Vélaz, I., Martínez-Barbosa, M. E. A Freeze-Thawing Method to Prepare Chitosan-Poly(vinyl alcohol) Hydrogels Without Crosslinking Agents and Diflunisal Release Studies. J. Vis. Exp. (155), e59636, doi:10.3791/59636 (2020).

View Video