Summary

内生菌与人类肠道微生物群使用体外浴发酵系统的相互作用分析

Published: August 23, 2019
doi:

Summary

本文描述了一种使用体外批次发酵系统研究内生菌与人类肠道微生物群之间的相互作用的协议。

Abstract

人类肠道微生物已成为促进人类健康、预防疾病的重要研究对象。因此,研究内生菌(如药物和益生菌)与肠道微生物群之间的相互作用已成为一个重要的研究课题。然而,由于生物伦理学和经济限制,在体内与人类志愿者进行的实验对于此类研究来说并不理想。因此,动物模型被用来评估体内的这些相互作用。然而,动物模型研究仍然受到生物伦理学考虑的限制,此外,动物和人类的微生物群的组成和多样性也各不相同。另一种研究策略是使用批量发酵实验,允许评估体外生物和肠道微生物群之间的相互作用。为了评估这一策略,双歧杆菌(比夫)外聚糖(EPS)被用作具有代表性的异种生物。然后,利用薄层色谱(TLC)、16S rRNA基因高通量测序的细菌群落成分分析、气相色谱等多种方法,对Bif EPS与人类肠道微生物群的相互作用进行了研究。短链脂肪酸(SCFA)。这里介绍的是一个协议,研究内生菌和人类肠道微生物群之间的相互作用,使用体外批次发酵系统。重要的是,该协议也可以修改,以研究其他内生菌和肠道微生物群之间的一般相互作用。

Introduction

胃微生物群在人类肠道的功能和宿主健康中起着重要的作用。因此,肠道微生物群最近成为疾病预防和治疗的重要目标。此外,肠道细菌与宿主肠道细胞相互作用,调节基本宿主过程,包括代谢活动、营养利用、免疫系统调节,甚至大脑功能和决策2,3.内生菌具有影响肠道微生物群的细菌组成和多样性的巨大潜力。因此,内生菌和人类肠道微生物群之间的相互作用吸引了越来越多的研究关注4,5,6,7,8,9。

由于生物伦理学和经济限制,很难评估内生菌与体内人类肠道微生物群之间的相互作用。例如,未经美国食品和药物管理局许可,无法进行调查内生菌与人类肠道微生物群之间相互作用的实验,招募志愿者的成本很高。因此,动物模型经常用于此类调查。然而,由于动物与人类相关的社区成分不同,且多样性,动物模型的使用受到限制。探索内生菌与人类肠道微生物群相互作用的体外替代方法是利用批量培养实验。

外聚糖(EPS)是益生菌,对维持人类健康有重大贡献10。由不同的单糖组合物和结构组成的不同 EPS 可以表现出不同的功能。以前的分析已经确定了Bif EPS的组成,这是当前研究11中具有代表性的异种生物。然而,在EPS组成和多样性方面,没有考虑到宿主相关的代谢效应。

此处描述的协议使用来自 12 名志愿者的粪便微生物群来发酵 Bif EPS。然后,结合使用薄层色谱法 (TLC)、16S rRNA 基因高通量测序和气相色谱 (GC) 来研究 EPS 与人类肠道微生物群之间的相互作用。与体内实验相比,该协议的明显优点是成本低,避免了宿主新陈代谢的干扰作用。此外,所述协议可用于其他研究,研究内生菌和人类肠道微生物群之间的相互作用。

Protocol

本议定书遵循湖南科学与工程大学(中国湖南)和浙江公学(浙江,中国)伦理委员会的指导方针。 1. 细菌的制备 制备双歧杆菌中溴 在950 mL蒸馏水中结合以下成分:肉提取物,5 g/L;酵母提取物,5克/升;病例蛋白,10克/升;大豆,5克/升;葡萄糖,10克/升;K2HPO4, 2.04 g/L;MgSO4±7H2O,0.22 g/L;MnSO4.H20, 0.05 g/L;纳Cl,5克/升;?…

Representative Results

在厌氧孵育72小时后,在PYG板上的B.长膜培养中观察到粘膜EPS的产生(图1A)。培养物的离心,随后是乙醇沉淀和干燥,导致纤维素样EPS的收集(图1B)。干燥EPS和可溶性淀粉然后用作发酵培养的碳源。TLC因其成本低、结果周转快而用于寡糖分离和纯度分析。虽然人类粪便微生物群淀粉的降解速度比Bif EPS快(图2)…

Discussion

在过去十年中,在了解人类肠道微生物群的组成和活动方面取得了重大进展。由于这些研究,全息生物概念已经出现,它代表宿主和相关微生物群落之间的相互作用,如在人类和他们的肠道微生物群之间19,20。此外,人类甚至现在被视为超级生物21,其中肠道微生物群已被确认为人类功能器官之一22,23。<sup …

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究由中国自然科学基金(第31741109号)、湖南省自然科学基金(第2018JJ3200号)和湖南科技大学应用特色学科建设项目资助。我们感谢LetPub(www.letpub.com)在编写本手稿期间提供的语言帮助。

Materials

0.22 µm membrane filters Millipore SLGP033RB Use to filter samples
0.4-mm Sieve Thermo Fischer 308080-99-1 Use to prepare human fecal samples
5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-Gal) Solarbio X1010 Use to prepare color plate
Acetic Sigma-Aldrich 71251 Standard sample for SCFA
Agar Solarbio YZ-1012214 The component of medium
Anaerobic chamber Electrotek  AW 400SG Bacteria culture and fermentation
Autoclave SANYO MLS-3750 Use to autoclave
Bacto soytone Sigma-Aldrich 70178 The component of medium
Baking oven Shanghai Yiheng Scientific Instruments Co., Ltd DHG-9240A Use to heat and bake
Beef Extract Solarbio G8270 The component of medium
Bifidobacterium longum Reuter ATCC ATCC® 51870™ Bacteria
Bile Salts Solarbio YZ-1071304 The component of medium
Butyric Sigma-Aldrich 19215 Standard sample for SCFA
CaCl2 Solarbio C7250 Salt solution of medium
Capillary column SHIMADZU-GL InertCap FFAP (0.25 mm × 30 m × 0.25 μm) Used to SCFA detection
Casein Peptone Sigma-Aldrich 39396 The component of medium
Centrifuge Thermo Scientific Sorvall ST 8 Use for centrifugation
CoSO4.7H2O Solarbio C7490 The component of medium
CuSO4.5H2O Solarbio 203165 The component of medium
Cysteine-HCl Solarbio L1550 The component of medium
Ethanol Sigma-Aldrich E7023 Use to prepare vitamin K1
FeSO4.7H2O Solarbio YZ-111614 The component of medium
Formic Acid Sigma-Aldrich 399388 Used to TLC
Gas chromatography Shimadzu Corporation GC-2010 Plus Used to SCFA detection
Glass beaker Fisher Scientific FB10050 Used for slurry preparation
Glucose Solarbio G8760 The component of medium
Haemin Solarbio H8130 The component of medium
HCl Sigma-Aldrich 30721 Basic solution used to adjust the pH of the buffers
Isobutyric Sigma-Aldrich 46935-U Standard sample for SCFA
Isovaleric Acids Sigma-Aldrich 129542 Standard sample for SCFA
K2HPO4 Solarbio D9880 Salt solution of medium
KCl Solarbio P9921 The component of medium
KH2PO4 Solarbio P7392 Salt solution of medium
LiCl.3H2O Solarbio C8380 Use to prepare color plate
Meat Extract Sigma-Aldrich-Aldrich 70164 The component of medium
Metaphosphoric Acid Sigma-Aldrich B7350 Standard sample for SCFA
MgCl2.6H2O Solarbio M8160 The component of medium
MgSO4.7H2O Solarbio M8300 Salt solution of medium
MISEQ Illumina MiSeq 300PE system DNA sequencing
MnSO4.H20 Sigma-Aldrich M8179 Salt solution of medium
Mupirocin Solarbio YZ-1448901 Antibiotic
NaCl Solarbio YZ-100376 Salt solution of medium
NaHCO3 Sigma-Aldrich 792519 Salt solution of medium
NanoDrop ND-2000 NanoDrop Technologies ND-2000 Determine DNA concentrations
NaOH Sigma-Aldrich 30620 Basic solution used to adjust the pH of the buffers
n-butanol ChemSpider 71-36-3 Used to TLC
NiCl2 Solarbio 746460 The component of medium
Orcinol Sigma-Aldrich 447420 Used to prepare orcinol reagents
Propionic Sigma-Aldrich 94425 Standard sample for SCFA
QIAamp DNA Stool Mini Kit QIAGEN 51504 Extract bacterial genomic DNA
Ready-to-use PBS powder Sangon Biotech (Shanghai) Co., Ltd. A610100-0001 Used to prepare the lipid suspension
Resazurin Solarbio R8150 Anaerobic Equipment
Speed Vacuum Concentrator LABCONCO CentriVap Use to prepare EPSs
Starch Solarbio YZ-140602 Use to the carbon source
Sulfuric Acid Sigma-Aldrich 150692 Used to prepare orcinol reagents
T100 PCR BIO-RAD 1861096 PCR amplification
TLC aluminium sheets MerckMillipore 116835 Used to TLC
Trypticase Peptone Sigma-Aldrich Z699209 The component of medium
Tryptone Sigma-Aldrich T7293 The component of medium
Tween 80 Solarbio T8360 Salt solution of medium
Valeric Sigma-Aldrich 75054 Standard sample for SCFA
Vitamin K1 Sigma-Aldrich V3501 The component of medium
Vortex oscillator Scientific Industries Vortex.Genie2 Use to vortexing
Yeast Extract Sigma-Aldrich Y1625 The component of medium
ZnSO4.7H2O Sigma-Aldrich Z0251 The component of medium

Referências

  1. Maarten, V. D. G., Blottière Hervé, M., Doré, J. Humans as holobionts: implications for prevention and therapy. Microbiome. 6 (1), 81 (2018).
  2. Allen, A. P., Dinan, T. G., Clarke, G., Cryan, J. F. A psychology of the human brain-gut-microbiome axis. Social and Personality Psychology Compass. 11 (4), e12309 (2017).
  3. Arora, T., Bäckhed, F. The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of Internal Medicine. 280, 39-349 (2016).
  4. Maurice, C., Haiser, H., Turnbaugh, P. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 152 (1-2), 39-50 (2013).
  5. Carmody, R. N., Turnbaugh, P. J. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. Journal of Clinical Investigation. 124 (10), 4173-4181 (2014).
  6. Lu, K., Mahbub, R., Fox, J. G. Xenobiotics: interaction with the intestinal microflora. ILAR Journal. 56 (2), 218-227 (2015).
  7. Taguer, M., Maurice, C. The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: implications for clinical outcomes. Clinical Pharmacology & Therapeutics. 99 (6), 588-599 (2016).
  8. Anubhav, D., Meenakshi, S., Shankar, G. T., Mande, S. S., Wilson, B. A. Xenobiotic metabolism and gut microbiomes. PLoS One. 11 (10), e0163099 (2016).
  9. Koppel, N., Rekdal, V. M., Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science. 356 (6344), 1246-1257 (2017).
  10. Hidalgo-Cantabrana, C., et al. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Applied and Environmental Microbiology. 80 (1), 9-18 (2014).
  11. Liu, G., et al. Effects of bifidobacteria-produced exopolysaccharides on human gut microbiota in vitro. Applied Microbiology and Biotechnology. , 1-10 (2018).
  12. Tang, R., et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut. 67 (3), 534-541 (2018).
  13. Kuczynski, J., et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Microbiology. 27 (1), 1-28 (2012).
  14. Hiltemann, S. D., Boers, S. A., van der Spek, P. J., Jansen, R., Hays, J. P., Stubbs, A. P. Galaxy mothur Toolset (GmT): a user-friendly application for 16S rRNA gene sequencing analysis using mothur. GigaScience. , (2018).
  15. Wang, Q., Garrity, G. M., Tiedje, J. M., Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology. 73 (16), 5261-5267 (2007).
  16. Schloss, P. D., et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology. 75 (23), 7537-7541 (2009).
  17. Bai, S., et al. Comparative study on the in vitro effects of pseudomonas aeruginosa and seaweed alginates on human gut microbiota. Plos One. 12 (2), e0171576 (2017).
  18. Zhang, Z., Xie, J., Zhang, F., Linhardt, R. J. Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Analytical Biochemistry. 371, 118-120 (2007).
  19. Simon, J. C., Marchesi, J. R., Mougel, C., Selosse, M. A. Host-microbiota interactions: from holobiont theory to analysis. Microbiome. 7 (5), (2019).
  20. Postler, T. S., Ghosh, S. Understanding the Holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metabolism. 26 (1), 110-130 (2017).
  21. Kramer, P., Bressan, P. Humans as superorganisms: how microbes, viruses, imprinted genes, and other selfish entities shape our behavior. Perspectives on Psychological Science. 10 (4), 464-481 (2015).
  22. Malfertheiner, P., Nardone, G. Gut microbiota: the forgotten organ. Digestive Diseases. 29 (6), (2011).
  23. Andoh, A. The gut microbiota is a new organ in our body. The Japanese journal of Gastro-Enterology. 112 (11), 1939-1946 (2015).
  24. Mika, A., Van, W. T., González, A., Herrera, J. J., Knight, R., Fleshner, M. Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male f344 rats. PLoS One. 10 (5), e0125889 (2015).
  25. Hugenholtz, F., de Vos, W. M. Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and Molecular Life Sciences. 75 (1), 149-160 (2018).
  26. Takagi, R., et al. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS One. 11 (8), e0160533 (2016).
  27. Ning, T., Gong, X., Xie, L., Ma, B. Gut microbiota analysis in rats with methamphetamine-induced conditioned place preference. Frontiers in Microbiology. 8 (1), 1620 (2017).
check_url/pt/59725?article_type=t

Play Video

Citar este artigo
Hu, Y., Chen, H., Li, P., Li, B., Cao, L., Zhao, C., Gu, Q., Yin, Y. Analysis of Interactions between Endobiotics and Human Gut Microbiota Using In Vitro Bath Fermentation Systems. J. Vis. Exp. (150), e59725, doi:10.3791/59725 (2019).

View Video