Summary

去除砷使用阳离子聚合物凝胶浸渍与氢氧化铁

Published: June 28, 2019
doi:

Summary

在这项工作中,我们制备了一种吸附剂,由阳离子N、N-二甲基氨基丙烯酰胺甲基氯化物四元(DMAPAAQ)聚合物凝胶和氢氧化铁组成,用于从地下水中吸附砷。凝胶是通过一种新方法制备的,旨在确保其结构中铁颗粒的最大含量。

Abstract

在这项工作中,我们制备了一种吸附剂,该凝胶由含有氢氧化铁的阳离子聚合物凝胶组成,其结构旨在从地下水中吸附砷。我们选择的凝胶是N,N-二甲基氨基丙烯酰胺甲基氯化物四元(DMAPAAQ)凝胶。我们制备方法的目的是确保凝胶结构中氢氧化铁的最大含量。这种设计方法使凝胶的聚合物结构和氢氧化铁成分同时吸附,从而提高了材料的吸附能力。为了检查凝胶的性能,我们测量了反应动力学,进行了pH敏感性和选择性分析,监测了砷吸附性能,并进行了再生实验。我们确定凝胶经过化学吸附过程,并在10小时达到平衡。此外,凝胶在中性pH值下有效吸附砷,并在复杂的电环境中选择性地吸附砷,达到1.63 mM/g的最大吸附量。凝胶可再生效率为87.6%,NaCl可用于解吸,而不是有害的NaOH。综合起来,提出的凝胶设计方法是构建高性能砷吸附剂的有效方法。

Introduction

水污染是一个很大的环境问题,促使研究人员开发方法,去除污染物,如砷从废物浪费1。在所有报告的方法中,吸附过程是重金属去除2、3、4、5、6、7等成本相对较低的方法。铁氧氢氧化粉被认为是从水溶液8、9中提取砷的最有效吸附剂之一。然而,这些材料存在许多缺点,包括早期饱和时间和有毒合成前体。此外,当这些吸附剂长时间使用时,对水质有严重的不利影响。需要额外的分离过程,如沉淀或过滤,然后净化受污染的水,这增加了生产成本进一步8,11。

最近,研究人员已经开发出了具有高效吸附特性的聚合物凝胶,如阳离子水凝胶、微凝胶和冷冻凝胶。例如,阳离子冷冻凝胶、聚(3-丙烯酰胺)三甲基氯化铵[p(APTMACl)]12实现了96%的砷去除率。此外,在pH9,约99.7%的去除效率实现了这个阳离子水凝胶13。在pH4,98.72mg/g的最大砷吸附能力是由微凝胶,基于三s(2-氨基乙酰)胺(TAEA)和甘油甘二甘二乙醚(GDE),p(TAEA-Co-GDE)14。虽然这些凝胶表现出良好的吸附性能,但它们未能在中性pH水平下有效地去除水中的砷,并且它们在所有研究环境中的选择性没有报告15。当Fe(III)-Sn(IV)混合二氧化涂层沙在313K和pH值为716时,测量的最大吸附能力为227mg/g。另外,Fe-Zr二氧化二涂层沙(IZBOCS)也用于去除砷,在318 K和pH值达到84.75毫克/克的最大吸附能力。其他报告的吸附剂受吸附性能低、缺乏可回收性、稳定性低、操作和维护成本高以及合成过程中危险化学品的使用等影响。

我们寻求通过开发一种具有改进砷吸附性能、复杂环境中的高选择性、回收能力以及中性pH水平高效活性的材料来解决上述限制。因此,我们开发了N,N-二甲基氨基丙烯酰胺甲基氯化物四元(DMAPAAQ)凝胶和铁(III)氢氧化(FeOOH)颗粒的阳离子凝胶复合物,作为脱砷的吸附剂。我们选择将FeOOH与我们的凝胶相结合,因为FeOOH增加了两种砷18的吸附。在这项研究中,我们的凝胶复合材料被设计成无孔,在制备过程中浸渍了FeOOH。在下一节中,进一步讨论了凝胶制备方法的细节,包括我们最大化FeOOH含量的策略。

Protocol

注意:砷毒性极强。在实验过程中,请随时使用手套、长袖衣服和实验护目镜,以防止砷溶液与皮肤和眼睛接触。如果砷与身体的任何部位接触,请立即用肥皂清洗。此外,请定期清理实验环境,这样您和其他人就不会接触砷,即使实验没有进行。砷暴露的症状可能在很长一段时间后出现。在清洁设备之前,首先用清水冲洗,并将水分别放入指定用于砷的实验废物容器中。然后用洗涤剂清洁设备。为了防止砷?…

Representative Results

图1描述了DMAPAAQ_FeOOH凝胶制备的实验设置。表1说明了凝胶制备中涉及的材料的组成。 图2显示了接触时间与DMAPAAQ_FeOOH凝胶对砷的吸附的关系。在图中,在0.5、1、3、7、11、24和48小时检查了砷的吸附量。结果表明,砷的吸附在10小时后达到平衡,24小时吸附后,检测到砷吸附量?…

Discussion

我们开发的方法的主要进步是凝胶复合材料的独特设计策略。我们的凝胶制备方法的目的是最大化凝胶中的铁含量。在准备过程中,我们分别在”发射器解决方案”和”单体解决方案”中添加了 FeCl3和 NaOH。一旦单体溶液与起激反应器溶液混合,FeCl3和 NaOH 之间出现反应,在凝胶内产生 FeOOH。这种现象确保了凝胶复合材料中最大的铁含量。尽管这种方法有其优点,但凝胶在以下条件下不会形成…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究得到了JSPS KAKENHI授权号(26420764,JP17K06892)的支持。此外,日本政府根据”建筑技术研究和发展补贴计划”对这项研究的贡献也得到承认。 我们还感谢森本先生对这项研究的贡献。广岛大学写作中心高级写作顾问阿黛尔·皮特凯斯利女士也因英语更正和建议而得到认可。该研究被选定为2017年第七届国际水与环境技术大会和2018年水与环境技术大会的口头演讲。

Materials

N,N’-dimethylamino propylacrylamide, methyl chloride quaternary (DMAPAAQ) (75% in H2O) KJ Chemicals Corporation, Japan 150707
N,N’-Methylene bisacrylamide (MBAA) Sigma-Aldrich, USA 1002040622
Sodium sulfite (Na2SO3) Nacalai Tesque, Inc., Japan 31922-25
Sodium sulfate (Na2SO4) Nacalai Tesque, Inc., Japan 31916-15
Di-sodium hydrogenarsenate heptahydrate(Na2HAsO4.7H20) Nacalai Tesque, Inc., Japan 10048-95-0
Ferric chloride(FeCl3) Nacalai Tesque, Inc., Japan 19432-25
Sodium hydroxide(NaOH) Kishida Chemicals Corporation, Japan 000-75165
Ammonium peroxodisulfate (APS) Kanto Chemical Co. Inc., Japan 907W2052
Hydrochloric acid (HCl) Kanto Chemical Co. Inc., Japan 18078-01
Sodium Chloride (NaCl) Nacalai Tesque, Inc., Japan 31320-05

Referências

  1. Oremland, R. S., Stolz, J. F. The Ecology of Arsenic. Science. 300 (5621), 939-944 (2003).
  2. Bibi, I., Icenhower, J., Niazi, N. K., Naz, T., Shahid, M., Bashir, S. Chapter 21 – Clay Minerals: Structure, Chemistry, and Significance in Contaminated Environments and Geological {CO2} Sequestration. Environmental Materials and Waste. , 543-567 (2016).
  3. He, R., Peng, Z., Lyu, H., Huang, H., Nan, Q., Tang, J. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of the Total Environment. 612, 1177-1186 (2018).
  4. Niazi, N. K., et al. Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science of the Total Environment. 621, 1642-1651 (2017).
  5. Shaheen, S. M., Eissa, F. I., Ghanem, K. M., Gamal El-Din, H. M., Al Anany, F. S. Heavy metals removal from aqueous solutions and wastewaters by using various byproducts. Journal of Environmental Management. 128, 514-521 (2013).
  6. Shakoor, M. B., et al. Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Critical Reviews in Environmental Science and Technology. 46 (5), 467-499 (2016).
  7. Vithanage, M., et al. Interaction of arsenic with biochar in soil and water: A critical review. Carbon. 113, 219-230 (2017).
  8. Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., Gao, B. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research. 68, 206-216 (2015).
  9. Saharan, P., Chaudhary, G. R., Mehta, S. K., Umar, A. Removal of Water Contaminants by Iron Oxide Nanomaterials. Journal of Nanoscience and Nanotechnology. 14 (1), 627-643 (2014).
  10. Siddiqui, S. I., Chaudhry, S. A. Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process Safety and Environmental Protection. 111, 592-626 (2017).
  11. Tuna, A. &. #. 2. 1. 4. ;. A., özdemir, E., şimşek, E. B., Beker, U. Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions. Chemical Engineering Journal. 223, 116-128 (2013).
  12. Sahiner, N., Demirci, S., Sahiner, M., Yilmaz, S., Al-Lohedan, H. The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions. Journal of Environmental Management. 152, 66-74 (2015).
  13. Barakat, M. A. A., Sahiner, N. Cationic hydrogels for toxic arsenate removal from aqueous environment. Journal of Environmental Management. 88 (4), 955-961 (2008).
  14. ur Rehman, S., et al. Removal of arsenate and dichromate ions from different aqueous media by amine based p(TAEA-co-GDE) microgels. Journal of Environmental Management. 197, 631-641 (2017).
  15. Safi, S. R., Gotoh, T., Iizawa, T., Nakai, S. Development and regeneration of composite of cationic gel and iron hydroxide for adsorbing arsenic from ground water. Chemosphere. 217, 808-815 (2019).
  16. Chaudhry, S. A., Ahmed, M., Siddiqui, S. I., Ahmed, S. Fe(III)-Sn(IV) mixed binary oxide-coated sand preparation and its use for the removal of As(III) and As(V) from water: Application of isotherm, kinetic and thermodynamics. Journal of Molecular Liquids. 224, 431-441 (2016).
  17. Chaudhry, S. A., Zaidi, Z., Siddiqui, S. I. Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): Modelling and process optimization. Journal of Molecular Liquids. 229, 230-240 (2017).
  18. Lin, S., Yang, H., Na, Z., Lin, K. A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide (FeOOH) on the root powder of long-root Eichhornia crassipes. Chemosphere. 192, 258-266 (2018).
  19. Allen, K. D., et al. Hsp70 chaperones as modulators of prion life cycle: Novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+]. Genética. 169 (3), 1227-1242 (2005).
  20. Chaplin, B. P., Roundy, E., Guy, K. A., Shapley, J. R., Werth, C. I. Effects of natural water ions and humic acid on catalytic nitrate reduction kinetics using an alumina supported Pd-Cu catalyst. Environmental Science and Technology. 40 (9), 3075-3081 (2006).
  21. Zhang, Y., Cremer, P. S. Interactions between macromolecules and ions: the Hofmeister series. Current Opinion in Chemical Biology. 10 (6), 658-663 (2006).
  22. Fawell, J. K., Ohanian, E., Giddings, M., Toft, P., Magara, Y., Jackson, P. Sulfate in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality. World Health Organization. , 8 (2004).
  23. ur Rehman, S., et al. Fast removal of high quantities of toxic arsenate via cationic p(APTMACl) microgels. Journal of Environmental Management. 166, 217-226 (2016).
check_url/pt/59728?article_type=t

Play Video

Citar este artigo
Safi, S. R., Gotoh, T., Iizawa, T., Nakai, S. Removal of Arsenic Using a Cationic Polymer Gel Impregnated with Iron Hydroxide. J. Vis. Exp. (148), e59728, doi:10.3791/59728 (2019).

View Video