Summary

使用两步PCR和下一代16S rRNA基因测序进行微生物群分析

Published: October 15, 2019
doi:

Summary

这里描述的是使用16S rRNA基因组测序和利用免费工具进行分析的微生物群分析的简化标准操作程序。该协议将帮助那些对微生物群领域较新的研究人员,以及那些需要更新方法以更高分辨率实现细菌分析的研究人员。

Abstract

人类肠道被数以万亿计的细菌殖民,这些细菌支持食物代谢、能量收集以及免疫系统调节等生理功能。健康肠道微生物群的扰动被建议在炎症性疾病(包括多发性硬化症(MS)的发展中发挥作用。环境和遗传因素会影响微生物群的组成;因此,识别与疾病表型有关的微生物群落已成为确定微生物群在健康和疾病中的作用的第一步。使用16S rRNA基因组测序来分析细菌群落有助于推进微生物群研究。尽管其用途广泛,但基于16S rRNA的分类分析没有统一的协议。另一个限制是,由于技术困难(如较小的排序读取),分类分配分辨率较低,以及由于反向 (R2) 读取质量低,在最终分析中使用仅转发 (R1) 读取。需要一种具有高分辨率的简化方法来描述给定生物标本中的细菌多样性。测序技术的进步,能够以高分辨率对较长的读取进行测序,这有助于克服其中一些挑战。目前的测序技术与公开提供的基因组分析管道相结合,如基于R的分因性安培隆去诺算法-2(DADA2)有助于推进高分辨率的微生物分析,因为DADA2可以在属中分配序列和物种水平。此处介绍的指南是使用 16S rRNA 基因的 V3-V4 区域的两步扩增执行细菌分析的指南,然后使用免费提供的分析工具(即 DADA2、Phyloseq 和 METAGENassist)进行分析。相信这个简单而完整的工作流程将成为有兴趣进行微生物群落分析研究的研究人员的极佳工具。

Introduction

微生物群是指生活在特定环境中的微生物(细菌、病毒、古生物、噬菌体和真菌)的集合,微生物群是指常驻微生物的集体基因组。由于细菌是人类和小鼠中最丰富的微生物之一,本研究只侧重于细菌分析。人类肠道被数以万亿计的细菌和数以百计的细菌菌株1殖民。正常的肠道微生物群通过调节功能(即维持完整的肠道屏障、食物代谢、能量平衡、抑制致病微生物的殖民化,以及调节免疫反应)2,3,4,5。肠道微生物群的成分扰动与多种人类疾病有关,包括胃肠道疾病6、肥胖7、8、中风9、癌症10、糖尿病8,11,类风湿性关节炎12,过敏13,和中枢神经系统相关疾病,如多发性硬化症(MS)14,15和阿尔茨海默氏症疾病(AD)8,16 。因此,近年来,人们越来越关注识别不同身体部位细菌成分的工具。可靠方法应具有高通量、易用、具有高分辨率细菌微生物群分类、成本低等特点。

基于培养的微生物技术不够敏感,无法识别和描述复杂的肠道微生物群,因为几种肠道细菌未能在培养中生长。基于测序的技术的出现,特别是基于16S rRNA的基因组测序,克服了其中一些挑战,改变了微生物群学研究17。先进的基于16S rRNA的测序技术有助于建立肠道微生物群在人类健康中的关键作用。国家卫生研究院的”人类微生物群落项目”和”MetaHIT项目”(欧洲倡议)19都有助于建立微生物群落分析的基本框架。这些举措有助于启动多项研究,以确定肠道微生物群在人类健康和疾病中的作用。

一些小组在炎症性疾病12、14、15、20、21、22的患者中表现出肠道消化不良。尽管由于多路复用和低成本,广泛用于分类分析,但对于基于 16S rRNA 的分类分析,没有统一的协议。另一个限制是分类分配分辨率低,因为测序读取(150 bp 或 250 bp)较小,并且由于低质量反向排序读取 (R2) 而只使用正向排序读取 (R1)。然而,测序技术的进步帮助克服了其中一些挑战,例如使用成对端读取(例如,Illumina MiSeq 2x300bp)对较长的读取进行排序的能力。

目前的测序技术可以测序600bp高质量的读取,这允许合并R1和R2读取。这些合并的较长的 R1 和 R2 读取允许更好的分类分配,特别是使用基于开放访问的 R 的分因安培放大器算法 -2 (DADA2) 平台。DADA2利用基于放大子序列变量(ASV)的赋值,而不是基于QIIME23所利用的97%的相似性的操作分类单元(OTU)分配。ASV 匹配导致数据库中在 1⁄2 核苷酸内的精确序列匹配,从而导致属和物种级别的分配。因此,更长、高质量的成对端读取和更好的分类分配工具(如DADA2)的组合改变了微生物学研究。

此处提供了使用 16S rRNA V3_V4 区域的两步扩增和使用 DADA2、Phyloseq 和 METAGENassist 管道进行数据分析的分步指南。在这项研究中,使用人类白细胞抗原(HLA)II类转基因小鼠,因为某些HLAII类等位基因与MS20、24、25等自身免疫性疾病的易感性有关。然而,HLA II类基因在调节肠道微生物群的组成方面的重要性尚不清楚。据推测,HLA II 类分子会通过选择特定细菌来影响肠道微生物群落。主要组织相容性复合物 (MHC) II 类敲除小鼠 (AE.KO) 或表达人类 HLA-DQ8 分子 (HLA-DQ8) 的小鼠24、25、26用于了解 HLA II 类分子在塑造肠道微生物群落。据信,这种基于R数据分析的完整和简化的工作流程将成为有兴趣进行微生物学分析研究的研究人员的极佳工具。

缺乏内源性小鼠MHCII类基因(AE.KO)和AE-/-的小鼠的生成。HLA-DQA1_0103,DQB1_0302(HLA-DQ8)转基因小鼠具有C57BL/6J背景,前面已经描述了26。从两性小鼠(8-12周龄)收集粪便样本。根据NIH和机构指南,小鼠以前在爱荷华大学动物设施中繁殖和维护。污染控制策略,如在层流柜内让小鼠退异,在不同菌株之间更换手套,以及适当维护小鼠,是分析肠道微生物群的关键步骤。

在整个过程中,强烈建议使用适当的个人防护设备 (PPE)。执行DNA分离、PCR1和PCR2扩增以及测序步骤时,应包括适当的阴性对照。建议使用无菌、无DNase、无RNase和无热原的用品。在整个协议中,应使用用于微生物工程的指定移液器和过滤移液器吸头。微生物群分析包括七个步骤:1)粪便样品的收集和处理;2)提取DNA;3) 16S rRNA基因扩增;4) 使用索引PCR构建DNA库;5) 索引 PCR(库)的清理和量化;6) MiSeq测序;7)数据处理和序列分析。图1显示了所有协议步骤的示意图。

Protocol

该协议得到了爱荷华大学动物护理和使用委员会的批准。 1. 粪便样品收集和处理 用70%乙醇对分压箱进行消毒(见材料表,补充图1)。 预标记微离心管(每只鼠标一个),带有样品ID和处理组(如适用)。 将小鼠放入消毒分压箱中,让它们正常排便长达 1 小时。 使用无菌钳将粪便颗粒收集到一个预先标记为 1.5 mL 的空式…

Representative Results

由于MHCII类分子(HLA在人类)是自适应免疫反应的中心参与者,并表现出与MS24,25,26的倾向性强关联, 它被假设HLA II类分子会影响肠道微生物成分。因此,缺乏MHC II类基因(AE.KO)或表达人类HLA-DQ8基因(HLA-DQ8)的小鼠被用来理解HLA II类分子在塑造肠道微生物群落中的重要性。 从AE.KO(n = 16)和HLA-DQ8(n= 1…

Discussion

所述方案很简单,具有易于遵循的步骤,使用来自大量感兴趣的生物标本的 16S rRNA 基因组测序执行微生物群分析。下一代测序已经改变了微生物生态学研究,特别是在人类和临床前疾病模型31,32。该技术的主要优点是能够成功地分析复杂微生物组合物(可培养和非可培养微生物)在给定的生物标本在高通量水平和低成本32。然而,几?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢NIAID/NIH(1R01AI137075-01)、卡弗信托医学研究计划赠款和爱荷华大学环境卫生科学研究中心NIEHS/NIH(P30 ES005605)的资助。

Materials

1.5 ml Natural Microcentriguge Tube USA, Scientific 1615-5500 Fecal collection
3M hand applicator squeegee PA1-G 3M, MN, US 7100038651 Squeeger for proper sealing of PCR Plate
Agencourt AMPure XP Beckman Coulter, IN, USA A63880 PCR Purification, NGS Clean-up, PCR clean-up
Agilent DNA 1000 REAGENT Agilent Technologies, CA, USA 5067-1504 DNA quantification and quality control
Bioanalyzer DNA 1000 chip Agilent Technologies, CA, USA 5067-1504 DNA quantification and quality control
Index Adopter Replacement Caps Illumina, Inc., CA, USA 15026762 New cap for Index 1 and 2 adopter primer
DNeasy PowerLyzer PowerSoil Kit MoBio now part of QIAGEN, Valencia, CA, USA 12855-100 DNA isolation
KAPA HiFi HotStart ReadyMiX (2X) Kapa Biosystem, MA, USA KK2602 PCR ready mix for Amplicon PCR1 and Indexed PCR2
Lewis Divider Boxes Lewis Bins, WI, US ND03080 Fecal collection
Magnetic stand New England BioLabs, MA, USA S1509S For PCR clean-up
MicroAmp Fast Optical 96-Well Reaction Plate Applied Biosystems, Thermo Fisher Scientific, CA, USA 4346906 PCR Plate
MicroAmp Optical Adhesive Film Applied Biosystems, Thermo Fisher Scientific, CA, USA 4311971 PCR Plate Sealer
Microfuge 20 Centrifuge Beckman Coulter, IN, USA B30154 Centrifuge used for DNA isolation
MiSeq Reagent Kit (600 cycles)v.3 Illumina, Inc., CA, USA MS-102-3003 For MiSeq Sequencing
Nextera XT DNA Library Preparation Kit Illumina, Inc., CA, USA FC-131-1001 16S rRNA DNA Library Preparation
Reagent Reservoirs Multichannel Trays ASI, FL,USA RS71-1 For Pooling of PCR2 Product
Plate Cetrifuge Thermo Fisher Scientific, CA, USA 75004393 For PCR reagent mixing and removing air bubble from Plate
PhiX Control Illumina, Inc., CA, USA FC-110-3001 For MiSeq Sequencing control
Microbiome DNA Purification Kit Thermo Fisher Scientific, CA, USA A29789 For purification of PCR1 product
PowerLyzer 24 Homogenizer Omni International, GA, USA 19-001 Bead beater for DNA Isolation
Qubit dsDNA HS (High Sensitivity) assay kit Thermo Fisher Scientific, CA, USA Q32854 DNA quantification
TruSeq Index Plate Fixture Illumina, Inc., CA, USA FC-130-1005 For Arranging of the index primers
Vertical Dividers (large) Lewis Bins, WI, US DV-2280 Fecal collection
Vertical Dividers (small) Lewis Bins, WI, US DV-1780 Fecal collection

Referências

  1. Lynch, S. V., Pedersen, O. The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine. 375 (24), 2369-2379 (2016).
  2. Blacher, E., Levy, M., Tatirovsky, E., Elinav, E. Microbiome-Modulated Metabolites at the Interface of Host Immunity. Journal of Immunology. 198 (2), 572-580 (2017).
  3. Jarchum, I., Pamer, E. G. Regulation of innate and adaptive immunity by the commensal microbiota. Current Opinion in Immunology. 23 (3), 353-360 (2011).
  4. Rescigno, M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends in Immunology. 32 (6), 256-264 (2011).
  5. Zhang, K., Hornef, M. W., Dupont, A. The intestinal epithelium as guardian of gut barrier integrity. Cell Microbiology. 17 (11), 1561-1569 (2015).
  6. Ghoshal, U. C., Park, H., Gwee, K. A. Bugs and irritable bowel syndrome: The good, the bad and the ugly. Journal of Gastroenterology and Hepatology. 25 (2), 244-251 (2010).
  7. Ley, R. E., Turnbaugh, P. J., Klein, S., Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature. 444 (7122), 1022-1023 (2006).
  8. Naseer, M. I., et al. Role of gut microbiota in obesity, type 2 diabetes and Alzheimer’s disease. CNS & Neurological Disorders – Drug Targets. 13 (2), 305-311 (2014).
  9. Yin, J., et al. Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-Oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. Journal of American Heart Association. 4 (11), (2015).
  10. Azcarate-Peril, M. A., Sikes, M., Bruno-Barcena, J. M. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer. American Journal of Physiology-Gastrointestinal and Liver Physiology. 301 (3), 401-424 (2011).
  11. Su, M., et al. Diversified gut microbiota in newborns of mothers with gestational diabetes mellitus. PLoS ONE. 13 (10), 0205695 (2018).
  12. Horta-Baas, G., et al. Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis. Journal of Immunological Research. , 4835189 (2017).
  13. Panzer, A. R., Lynch, S. V. Influence and effect of the human microbiome in allergy and asthma. Current Opinion in Rheumatology. 27 (4), 373-380 (2015).
  14. Chen, J., et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Science Reports. 6, 28484 (2016).
  15. Tremlett, H., et al. Gut microbiota composition and relapse risk in pediatric MS: A pilot study. Journal of Neurological Science. 363, 153-157 (2016).
  16. Pistollato, F., et al. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutritional Reviews. 74 (10), 624-634 (2016).
  17. Caporaso, J. G., et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Science U. S. A. 108, 4516-4522 (2011).
  18. Turnbaugh, P. J., et al. The human microbiome project. Nature. 449 (7164), 804-810 (2007).
  19. Dusko Ehrlich, S. Meta, H.I.T.c. Metagenomics of the intestinal microbiota: potential applications. Gastroenterologie Clinique et Biologique. 34, 23-28 (2010).
  20. Jangi, S., et al. Alterations of the human gut microbiome in multiple sclerosis. Nature Communications. 7, 12015 (2016).
  21. Miyake, S., et al. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS ONE. 10 (9), 0137429 (2015).
  22. Shahi, S. K., Freedman, S. N., Mangalam, A. K. Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes. 8 (6), 607-615 (2017).
  23. Callahan, B. J., et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods. 13 (7), 581-583 (2016).
  24. Das, P., et al. Complementation between specific HLA-DR and HLA-DQ genes in transgenic mice determines susceptibility to experimental autoimmune encephalomyelitis. Human Immunology. 61 (3), 279-289 (2000).
  25. Mangalam, A. K., Rajagopalan, G., Taneja, V., David, C. S. HLA class II transgenic mice mimic human inflammatory diseases. Advances in Immunology. 97, 65-147 (2008).
  26. Mangalam, A., et al. HLA-DQ8 (DQB1*0302)-restricted Th17 cells exacerbate experimental autoimmune encephalomyelitis in HLA-DR3-transgenic mice. Journal of Immunology. 182 (8), 5131-5139 (2009).
  27. Kiernan, M. G., et al. The Human Mesenteric Lymph Node Microbiome Differentiates Between Crohn’s Disease and Ulcerative Colitis. Journal of Crohn’s & Colitis. 13 (1), 58-66 (2019).
  28. McMurdie, P. J., Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 8 (4), 61217 (2013).
  29. Arndt, D., et al. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Research. 40, 88-95 (2012).
  30. Hugerth, L. W., Andersson, A. F. Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing. Frontiers in Microbiology. 8, 1561 (2017).
  31. Srinivasan, R., et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS ONE. 10 (2), 0117617 (2015).
  32. Didelot, X., Bowden, R., Wilson, D. J., Peto, T. E. A., Crook, D. W. Transforming clinical microbiology with bacterial genome sequencing. Nature Reviews Genetics. 13 (9), 601-612 (2012).
  33. Buermans, H. P., den Dunnen, J. T. Next generation sequencing technology: Advances and applications. Biochimica et Biophysica Acta. 1842 (10), 1932-1941 (2014).
  34. Cai, L., Ye, L., Tong, A. H., Lok, S., Zhang, T. Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets. PLoS ONE. 8 (1), 53649 (2013).
  35. Kuczynski, J., et al. Experimental and analytical tools for studying the human microbiome. Nature Reviews Genetics. 13 (1), 47-58 (2011).
  36. Mangalam, A., et al. Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease. Cell Reports. 20 (6), 1269-1277 (2017).
  37. Shahi, S. K., et al. Prevotella histicola, A Human Gut Commensal, Is as Potent as COPAXONE(R) in an Animal Model of Multiple Sclerosis. Frontiers in Immunology. 10, 462 (2019).
  38. Bliss, D. Z., et al. Comparison of subjective classification of stool consistency and stool water content. Journal of Wound Ostomy & Continence Nursing. 26 (3), 137-141 (1999).
  39. Kim, D., et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome. 5 (1), 52 (2017).
  40. Sinha, R., et al. Collecting Fecal Samples for Microbiome Analyses in Epidemiology Studies. Cancer Epidemiology, Biomarkers & Prevention. 25 (2), 407-416 (2016).
  41. Salonen, A., et al. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. Journal of Microbiological Methods. 81 (2), 127-134 (2010).
  42. Santiago, A., et al. Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiology. 14, 112 (2014).
  43. Glassing, A., Dowd, S. E., Galandiuk, S., Davis, B., Chiodini, R. J. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathogens. 8, 24 (2016).
  44. Salter, S. J., et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology. 12, 87 (2014).
  45. Weiss, S., et al. Tracking down the sources of experimental contamination in microbiome studies. Genome Biology. 15 (12), 564 (2014).
  46. Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME Journal. 5 (2), 169-172 (2011).
  47. Schloss, P. D. Evaluating different approaches that test whether microbial communities have the same structure. ISME Journal. 2 (3), 265-275 (2008).
  48. Xia, Y., Sun, J. Hypothesis Testing and Statistical Analysis of Microbiome. Genes & Diseases. 4 (3), 138-148 (2017).
  49. Malla, M. A., et al. Exploring the Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease Diagnosis and Treatment. Frontiers in Immunology. 9, 2868 (2018).
check_url/pt/59980?article_type=t

Play Video

Citar este artigo
Shahi, S. K., Zarei, K., Guseva, N. V., Mangalam, A. K. Microbiota Analysis Using Two-step PCR and Next-generation 16S rRNA Gene Sequencing. J. Vis. Exp. (152), e59980, doi:10.3791/59980 (2019).

View Video