Summary

混合微驱系统,带可回收的光电探头和Tetrode,用于自由移动小鼠的双位点高密度记录

Published: August 10, 2019
doi:

Summary

该协议描述了混合微驱阵列的构建,该阵列允许在自由移动的小鼠的两个大脑区域中植入9个独立可调节的四分线体和一个可调光硅探头。还演示了一种用于多种用途的安全回收和重复使用光硅探头的方法。

Abstract

多区域神经记录可以为理解多个大脑区域之间的精细时间级交互提供重要信息。然而,传统的微驱设计通常只允许使用一种类型的电极从单个或多个区域进行记录,从而限制了单单元或深度轮廓记录的产量。它还经常限制将电极记录与光遗传学工具相结合以靶向通路和/或细胞类型特定活动的能力。这里介绍的是一个混合微驱阵列,用于自由移动的小鼠,以优化产量,并描述其制造和重用微驱阵列。目前的设计采用九个四分线和一个光硅探头,同时植入两个不同的大脑区域,在自由移动的小鼠中。四分线和光硅探头可沿大脑中的多索文轴独立调节,以最大化单位和振荡活动的收率。此微驱阵列还集成了光、中介光遗传学操作的设置,以研究远程神经回路的区域或细胞类型特定响应和功能。此外,光硅探头可以在每次实验后安全回收和重复使用。由于微驱阵列由 3D 打印部件组成,因此可轻松修改微驱的设计以适应各种设置。首先介绍了微驱阵列的设计以及如何将光纤连接到硅探头进行光遗传学实验,然后制作 ttrode 捆绑和将阵列植入小鼠大脑。记录局部场势和单位尖峰,结合光遗传学刺激,也证明了微驱阵列系统在自由移动小鼠的可行性。

Introduction

通过调查不同大脑区域如何动态地相互作用,了解神经元活动如何支持认知过程(如学习和记忆)至关重要。为了阐明认知任务背后的神经活动动力学,在微驱阵列1、2、3的帮助下,在自由移动的动物身上进行了大规模的细胞外电生理学研究。 4.在过去的二十年里,已经开发出几种微驱阵列,为大鼠5、6、7、8和小鼠9植入多个大脑区域。10,11,12.尽管如此,目前的微驱设计一般不允许使用多种探头类型,迫使研究人员选择具有特定优点和限制的单电极类型。例如,ttrode 阵列适用于人口稠密的大脑区域,如背海马 CA11,13,而硅探针为研究解剖连接提供了更好的几何轮廓14,15.

特龙德和硅探头常用于体内慢性记录,各有优缺点。除了成本效益和机械刚度外,Tetrodes在单单元隔离方面比单电极16、17具有显著优势。当与微驱动器8、18、19、20相结合时,它们也能提高单单元活动的收益率。增加同时记录的神经元的数量对于理解神经回路21的功能至关重要。例如,需要大量细胞来调查功能异质细胞类型的小群体,如与时间相关的22或奖励编码23个细胞。需要更高的细胞数来提高尖峰序列13、24、25的解码质量。

然而,特龙在记录空间分布的细胞(如皮层或丘拉他)方面处于不利地位。与特罗伊德相比,硅探头可以提供局部场势(LLFP)的空间分布和相互作用,并在局部结构14、26中进行探针活动。多柄硅探头进一步增加了记录站点的数量,并允许跨单个或相邻结构录制 27。然而,与特龙相比,这种阵列在电极位点的定位上不太灵活。此外,高密度探测器需要复杂的尖峰排序算法,以提取有关相邻通道作用电位的信息,以镜像Tetrodes28、29、30获取的数据。因此,单单位的总体产量往往小于四元组。此外,硅探头由于其脆弱性和高成本而处于不利地位。因此,对硅探头的选择取决于记录的目的,即是否优先考虑在记录点获得高产量的单单元或空间分析。

除了记录神经活动,光遗传学操作已成为神经科学中更强大的工具之一,以检查特定细胞类型和/或通路如何促进神经回路功能13,31, 32,33.然而,光遗传学实验在微驱阵列设计中需要额外的考虑,以将光纤连接器连接到刺激光源34,35,36。通常,连接光纤需要相对较大的力,这可能导致探头在大脑中发生机械移动。因此,将植入式光纤与传统的微驱阵列相结合并非易事。

出于上述原因,研究人员需要根据记录的目的优化电极类型的选择或植入光纤。例如,在海马1,13中,四叶酸用于实现更高的单位产量,而硅探针用于研究皮质区域的层状深度轮廓,如中端皮质皮层(MEC)37。目前,据报道,为大鼠5、11同时植入三分线体和硅探头的微驱。然而,由于微驱的重量、鼠标头上空间有限以及设计采用不同探头的微驱的空间要求,在小鼠中植入多个四头和硅探头是极具挑战性的。虽然可以在没有微驱的情况下植入硅探头,但此过程不允许调整探头,降低了硅探针回收12、38的成功率。此外,光遗传学实验在微驱阵列设计中需要额外的考虑。该协议演示如何构建和植入用于自由移动小鼠的慢性记录的微驱阵列,这允许植入 9 个独立可调节的四分线体和一个可调节的光电探头。这种微驱阵列还有助于光遗传学实验和硅探头的回收。

Protocol

这里描述的所有方法都已获得得克萨斯大学西南医学中心机构动物护理和使用委员会(IACUC)的批准。 1. 微驱阵列部件的准备 使用牙科模型树脂使用 3D 打印机打印微驱阵列部件(图 1A,B)。确保单个 3D 打印层的厚度小于 50 μm,以保持打印零件上的小孔清晰可行。注:微驱阵列由五个部分组成(图1C):(1)微驱阵列的主体,包括9个用于四驱的微驱螺钉和一个用于硅探?…

Representative Results

微驱阵列在5天内建成。表2描述了微驱准备的时间表。使用这种微驱,将9个四分线和一个硅探头分别植入小鼠的海马CA1和MEC[21周大/29克体重男性pOxr1-Cre(C57BL/6背景)]中。这种转基因小鼠在MEC层III金字塔神经元中表达Cre。在电极植入前10周,将200 nL的AAV5-DIO-ChR2-YFP(奶口:7.7 x 1012 gc/mL)注射到MEC中。使用低通滤波器(1-500 Hz)记录LLFP,并使用高通滤波器(0.8-5 kHz)检测到尖峰单元。光刺激(+ = 450…

Discussion

该协议演示如何构建和植入混合微驱阵列,允许使用独立可调的四轮驱动和硅探针记录来自两个大脑区域的神经活动。并演示了光遗传学实验和硅探头在实验后的恢复。虽然可调硅探针33或光硅探头36植入先前在小鼠中演示,但该协议在同时Ttrode阵列和光硅探头植入中具有明显优势,可提供灵活的选择植入式探头类型。植入式探头的类型可根据实验目的进行切换,如?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作部分得到了日本科学海外研究促进协会(HO)、授予学者计划(TK)、人类前沿科学计划(TK)、脑研究基金会(TK)、学院科学和技术获取和保留计划 (TK)、大脑和行为研究基金会 (TK) 和住友基金会研究资助 (JY)、NARSAD 青年调查员研究资助 (JY)。我们感谢W.Marks在编写稿件期间提出的宝贵意见和建议。

Materials

#00-90 screw J.I. Morris #00-90-1/8 EIB screws
#0-80 nut Small Parts B00DGB7CT2 brass nut for holding fiber ferrule holder
#0-80 screw Small Parts B000FMZ57G brass machine screw for probe connector mount, fiber ferrule holder, and shielding cone
22 Ga polyetheretherketone tubes Small Parts SLPT-22-24 for attaching to the shuttle, 0.025 inches inner diameter
23 Ga stainless tubing Small Parts HTX-23R for tetrode
23 Ga stainless wire Small Parts HTX-23R-24-10 for L-shape/support wire
26 Ga stainless wire Small Parts GWX-0200 for guide-posts
30 Ga stainless wire Small Parts HTX-30R for tetrode
3-D CAD software package Dassault Systèmes SolidWorks 2003
3D printer FormLab Form2
5.5mil polyimide insulating tubes HPC Medical 72113900001-012
aluminum foil tape Tyco Tyco Adhesives 617022 Aluminum Foil Tape for the alternative shielding cone
conductive paste YSHIELD HSF54 for shielding cone
customized screws for silicon-probe microdrive AMT UNM1.25-HalfMoon half-moon stainless screw, 1.5 mm diameter, 300 µm thread pitch
customized screws for tetrode microdrive AMT Yamamoto_0000-160_9mm slotted stainless screw, 0.5 mm diameter, 160 µm thread pitch, custom-made to order for our design
dental acrylic Stoelting 51459
dental model resin FormLab RS-F2-DMBE-02
Dremel rotary tool Dremel model 800 a grinder
drill bit Fine Science Tool 19007-05
electric interface board Neuralynx EIB-36-Narrow
epoxy Devcon GLU-735.90 5 minutes epoxy
eye ointment Dechra Puralube Ophthalmic Ointment to prevent mice eyes from drying during surgery
fiber polishing sheet Thorlabs LFG5P for polishing the optical fiber
fine tweezers Protech International 15-368 for loading/recovering the silicon probe
gold pins Neuralynx EIB Pins Small
ground wire A-M Systems 781500 0.010 inch bare silver wire
headstage preamp Neuralynx HS-36
impedance meter BAK electronics Model IMP-2 1 kHz testing frequency
mineral oil ZONA 36-105 for lubricating screws and wires
optical fiber Doric MFC_200/260-0.22_50mm_ZF1.25(G)_FLT
Recording system Neuralynx Digital Lynx 4SX
ruby fiber scribe Thorlabs S90R for cleaving the optical fiber
silicon grease Fine Science Tool 29051-45
silicon probe Neuronexus A1x32-Edge-5mm-20-177 Fig. 3, 4A, 4B, 5
silicon probe Neuronexus A1x32-6mm-50-177 Fig. 4C
silicon probe washing solution Alcon AL10078844 contact lens cleaner
silicone lubber Smooth-On Dragon Skin 10 FAST for preparation of microdrive mold
silver paint GC electronic 22-023 silver print II coating, used for ground wires
skull screw Otto Frei 2647-10AC 0.8 mm diameter, 0.200 mm thread pitch
standard surgical scissors ROBOZ RS-5880
stereotaxic apparatus Kopf Model 942
super glue Loctite LOC230992 for applying to guide-posts
surgical tweezers ROBOZ RS-5135
Tetrode Twister Jun Yamamoto TT-01
tetrode wires Sandvik PX000004

Referências

  1. Wilson, M. A., McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science. 261 (5124), 1055-1058 (1993).
  2. Gothard, K. M., Skaggs, W. E., Moore, K. M., McNaughton, B. L. Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. The Journal of Neuroscience. 16 (2), 823-835 (1996).
  3. Keating, J. G., Gerstein, G. L. A chronic multi-electrode microdrive for small animals. Journal of Neuroscience Methods. 117 (2), 201-206 (2002).
  4. Winson, J. A compact micro-electrode assembly for recording from the freely moving rat. Electroencephalography and Clinical Neurophysiology. 35 (2), 215-217 (1973).
  5. Michon, F., et al. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals. Journal of Neural Engineering. 13 (4), 046018 (2016).
  6. Lansink, C. S., et al. A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals. Journal of Neuroscience Methods. 162 (1-2), 129-138 (2007).
  7. Billard, M. W., Bahari, F., Kimbugwe, J., Alloway, K. D., Gluckman, B. J. The systemDrive: a Multisite, Multiregion Microdrive with Independent Drive Axis Angling for Chronic Multimodal Systems Neuroscience Recordings in Freely Behaving Animals. eNeuro. 5 (6), (2018).
  8. Kloosterman, F., et al. Micro-drive array for chronic in vivo recording: drive fabrication. Journal of Visualized Experiments. (26), (2009).
  9. Lu, P. L., et al. Microdrive with Two Independent Moveable Sets for Wide-Ranging, Multi-Site, Multi-Channel Brain Recordings. Journal of Medical and Biological Engineering. 34 (4), 341-346 (2014).
  10. Haiss, F., Butovas, S. A miniaturized chronic microelectrode drive for awake behaving head restrained mice and rats. Journal of Neuroscience Methods. 187 (1), 67-72 (2010).
  11. Headley, D. B., DeLucca, M. V., Haufler, D., Pare, D. Incorporating 3D-printing technology in the design of head-caps and electrode drives for recording neurons in multiple brain regions. Journal of Neurophysiology. 113 (7), 2721-2732 (2015).
  12. Voigts, J., Siegle, J. H., Pritchett, D. L., Moore, C. I. The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice. Frontiers in Systems Neuroscience. 7, 8 (2013).
  13. Yamamoto, J., Tonegawa, S. Direct Medial Entorhinal Cortex Input to Hippocampal CA1 Is Crucial for Extended Quiet Awake Replay. Neuron. 96 (1), 217-227 (2017).
  14. Schomburg, E. W., et al. Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron. 84 (2), 470-485 (2014).
  15. Fernandez-Ruiz, A., et al. Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling. Neuron. 93 (5), 1213-1226 (2017).
  16. Rey, H. G., Pedreira, C., Quian Quiroga, R. Past, present and future of spike sorting techniques. Brain Research Bulletin. 119 (Pt B), 106-117 (2015).
  17. Gray, C. M., Maldonado, P. E., Wilson, M., McNaughton, B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. Journal of Neuroscience Methods. 63 (1-2), 43-54 (1995).
  18. Yamamoto, J., Wilson, M. A. Large-scale chronically implantable precision motorized microdrive array for freely behaving animals. Journal of Neurophysiology. 100 (4), 2430-2440 (2008).
  19. Nguyen, D. P., et al. Micro-drive array for chronic in vivo recording: tetrode assembly. Journal of Visualized Experiments. (26), (2009).
  20. Lu, L., Popeney, B., Dickman, J. D., Angelaki, D. E. Construction of an Improved Multi-Tetrode Hyperdrive for Large-Scale Neural Recording in Behaving Rats. Journal of Visualized Experiments. (135), (2018).
  21. Jun, J. J., et al. Fully integrated silicon probes for high-density recording of neural activity. Nature. 551 (7679), 232-236 (2017).
  22. Pastalkova, E., Itskov, V., Amarasingham, A., Buzsaki, G. Internally generated cell assembly sequences in the rat hippocampus. Science. 321 (5894), 1322-1327 (2008).
  23. Gauthier, J. L., Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. Neuron. 99 (1), 179-193 (2018).
  24. Davidson, T. J., Kloosterman, F., Wilson, M. A. Hippocampal replay of extended experience. Neuron. 63 (4), 497-507 (2009).
  25. Gerwinn, S., Macke, J., Bethge, M. Bayesian population decoding of spiking neurons. Frontiers in Computational Neuroscience. 3, 21 (2009).
  26. Sakata, S., Harris, K. D. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron. 64 (3), 404-418 (2009).
  27. Csicsvari, J., et al. Massively parallel recording of unit and local field potentials with silicon-based electrodes. Journal of Neurophysiology. 90 (2), 1314-1323 (2003).
  28. Harris, K. D., Quiroga, R. Q., Freeman, J., Smith, S. L. Improving data quality in neuronal population recordings. Nature Neuroscience. 19 (9), 1165-1174 (2016).
  29. Hilgen, G., et al. Unsupervised Spike Sorting for Large-Scale, High-Density Multielectrode Arrays. Cell Reports. 18 (10), 2521-2532 (2017).
  30. Rossant, C., et al. Spike sorting for large, dense electrode arrays. Nature neuroscience. 19 (4), 634-641 (2016).
  31. Iseri, E., Kuzum, D. Implantable optoelectronic probes for in vivo optogenetics. Journal of Neural Engineering. 14 (3), 031001 (2017).
  32. Klapoetke, N. C., et al. Independent optical excitation of distinct neural populations. Nature Methods. 11 (3), 338-346 (2014).
  33. Yamamoto, J., Suh, J., Takeuchi, D., Tonegawa, S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell. 157 (4), 845-857 (2014).
  34. Rangel Guerrero, D. K., Donnett, J. G., Csicsvari, J., Kovacs, K. A. Tetrode Recording from the Hippocampus of Behaving Mice Coupled with Four-Point-Irradiation Closed-Loop Optogenetics: A Technique to Study the Contribution of Hippocampal SWR Events to Learning. eNeuro. 5 (4), (2018).
  35. Liang, L., et al. Integrated and Quick-to-Assemble (SLIQ) Hyperdrives for Functional Circuit Dissection. Frontiers in Neural Circuits. 11, 8 (2017).
  36. Chung, J., Sharif, F., Jung, D., Kim, S., Royer, S. Micro-drive and headgear for chronic implant and recovery of optoelectronic probes. Scientific Reports. 7 (1), 2773 (2017).
  37. Quilichini, P., Sirota, A., Buzsaki, G. Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat. The Journal of Neuroscience. 30 (33), 11128-11142 (2010).
  38. Sauer, J. F., Struber, M., Bartos, M. Recording Spatially Restricted Oscillations in the Hippocampus of Behaving Mice. Journal of Visualized Experiments. (137), (2018).
  39. Shikano, Y., Sasaki, T., Ikegaya, Y. Simultaneous Recordings of Cortical Local Field Potentials, Electrocardiogram, Electromyogram, and Breathing Rhythm from a Freely Moving Rat. Journal of Visualized Experiments. (134), (2018).
  40. Brunetti, P. M., et al. Design and fabrication of ultralight weight, adjustable multi-electrode probes for electrophysiological recordings in mice. Journal of Visualized Experiments. 91 (91), e51675 (2014).
  41. Battaglia, F. P., et al. The Lantern: an ultra-light micro-drive for multi-tetrode recordings in mice and other small animals. Journal of Neuroscience Methods. 178 (2), 291-300 (2009).
  42. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), (2012).
  43. Suh, J., Rivest, A. J., Nakashiba, T., Tominaga, T., Tonegawa, S. Entorhinal cortex layer III input to the hippocampus is crucial for temporal association memory. Science. 334 (6061), 1415-1420 (2011).
  44. Royer, S., et al. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. The European Journal of Neuroscience. 31 (12), 2279-2291 (2010).
  45. Steinmetz, N. A., Koch, C., Harris, K. D., Carandini, M. Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Current Opinion in Neurobiology. 50, 92-100 (2018).
  46. Jones, M. W., Wilson, M. A. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biology. 3 (12), e402 (2005).
  47. Frank, L. M., Brown, E. N., Wilson, M. A. A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex. Journal of Neurophysiology. 86 (4), 2029-2040 (2001).
  48. Kitamura, T., et al. Eng and circuits crucial for systems consolidation of a memory. Science. 356 (6333), 73-78 (2017).
  49. McGaugh, J. L., Cahill, L., Roozendaal, B. Involvement of the amygdala in memory storage: interaction with other brain systems. Proceedings of the National Academy of Sciences of the United States of America. 93 (24), 13508-13514 (1996).
  50. Frankland, P. W., Bontempi, B., Talton, L. E., Kaczmarek, L., Silva, A. J. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science. 304 (5672), 881-883 (2004).
  51. Mikulovic, S., et al. On the photovoltaic effect in local field potential recordings. Neurophotonics. 3 (1), 015002 (2016).
  52. Kuleshova, E. P. Optogenetics – New Potentials for Electrophysiology. Neuroscience and Behavioral Physiology. 49 (2), 169-177 (2019).
  53. Meng, E., Hoang, T. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Advanced Drug Delivery Reviews. 64 (14), 1628-1638 (2012).
  54. Hu, S., et al. Dietary Fat, but Not Protein or Carbohydrate, Regulates Energy Intake and Causes Adiposity in Mice. Cell Metabolism. 28 (3), 415-431 (2018).
  55. Yang, Y., Smith, D. L., Keating, K. D., Allison, D. B., Nagy, T. R. Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity. 22 (10), 2147-2155 (2014).
  56. Morton, D. B., et al. Refinements in telemetry procedures. Seventh report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement, Part A. Laboratory Animals. 37 (4), 261-299 (2003).
  57. Lidster, K., et al. Opportunities for improving animal welfare in rodent models of epilepsy and seizures. Journal of Neuroscience Methods. 260, 2-25 (2016).
  58. Lin, L., et al. Large-scale neural ensemble recording in the brains of freely behaving mice. Journal of Neuroscience Methods. 155 (1), 28-38 (2006).
  59. Kislin, M., et al. Flat-floored air-lifted platform: a new method for combining behavior with microscopy or electrophysiology on awake freely moving rodents. Journal of Visualized Experiments. (88), e51869 (2014).
  60. Gaskill, B. N., Karas, A. Z., Garner, J. P., Pritchett-Corning, K. R. Nest building as an indicator of health and welfare in laboratory mice. Journal of Visualized Experiments. (82), 51012 (2013).
check_url/pt/60028?article_type=t

Play Video

Citar este artigo
Osanai, H., Kitamura, T., Yamamoto, J. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice. J. Vis. Exp. (150), e60028, doi:10.3791/60028 (2019).

View Video