Summary

通过浸没通过微生物诱导的钙化物沉淀(MICP)改善沙土

Published: September 12, 2019
doi:

Summary

这里介绍了微生物诱导的方解石沉淀(MICP)技术,通过浸泡改善土壤性能。

Abstract

本文旨在开发一种浸入法,以改善微生物诱导方解石沉淀(MICP)处理样品。组装了一批反应器,将土壤样品浸入水泥介质中。凝固介质可以自由扩散到批次反应器中的土壤样品中,而不是注入水泥介质。使用全接触柔性模具、刚性全接触模具和芯砖模具来制备不同的土壤样品支架。选择合成纤维和天然纤维来强化MICP处理的土壤样品。测量了MICP处理样品不同区域的沉淀CaCO3。CaCO3分布结果表明,沉淀的CaCO3采用浸入法在土壤样品中均匀分布。

Introduction

微生物诱导方解石沉淀(MICP)作为一种生物地面改良技术,能够提高土壤的工程性能。它用于增强土壤的强度、刚度和渗透性。MICP技术在土壤改良方面得到了全世界1、2、3、4的高度重视。碳酸盐降水自然发生,并且可能由土壤环境原生的非致病生物诱发。MICP生物地球化学反应是由尿素细菌、尿素和富含钙的溶液5、6的驱动。孢子菌糊化是一种高度活跃的尿酶,能催化方解石7、8的沉淀反应网络。尿素水解工艺产生溶解铵(NH4+)和无机碳酸盐(CO32-)。碳酸盐离子与钙离子发生反应,作为碳酸钙晶体沉淀。尿素水解反应如下所示:

Equation 1

Equation 2

沉淀的CaCO3可以将沙粒粘合在一起,提高MICP处理土壤的工程性能。MICP技术已应用于各种应用,如提高土壤的强度和刚度,修复混凝土,以及环境修复9,10,11,12,13,14,15.

等人16日研制出一种浸没方法制备MICP处理的样品。该方法采用土工纺织品制成的全接触柔性模具。沉淀的CaCO3均匀地分布在其MICP处理的样品中。Bu等人17开发出一种刚性全接触模具,通过浸入法制备MICP处理的光束样品。使用刚性全接触模具制备的 MICP 处理样品可形成合适的梁形。将MICP处理的样品分为4个,并测量CaCO3含量。按重量计,CaCO3含量从 8.4 ± 1.5% 到 9.4 ± 1.2% 不等,这表明 CaCO3通过浸没方法均匀分布于 MICP 处理的样品中。这些MICP处理样品也实现了更好的机械性能。这些MICP处理的生物标本达到950 kPa的弯曲强度,类似于20-25%的水泥处理样品(600-1300 kPa)。Li等人10将随机分布的离散纤维加入沙土中,采用MICP浸入法对土壤进行处理。他们发现,通过添加适当的纤维,可明显增强MICP处理土壤的剪切强度、延展性和失效应变。

MICP的浸入法已经不断改进10,16,17。该方法可用于制备 MICP 处理的土壤样品和 MICP 处理的预制建筑材料,如砖块和横梁。开发了样品制备模具的不同几何尺寸。在MICP处理的样品中加入纤维,以提高其性能。此详细协议旨在记录 MICP 治疗的浸入式方法。

Protocol

注:以下程序中使用的所有相关材料均无危险。个人防护设备(安全眼镜、手套、实验室外套、全长裤子、闭趾鞋)仍需要。 1. 细菌溶液的制备 培养介质的准备(NH4-YE介质)注:每升去离子水生长培养基的成分为:20克酵母提取物;10 g 的 (NH4)2SO4;和 0.13 M Tris 缓冲液 (pH 9.0)。 高压灭菌成分分开。 溶解20克酵母提取…

Representative Results

图7显示了沉淀的CaCO3在整个MICP处理样品中的分布情况。MICP处理的样本分为三个不同的区域。用酸洗法对每个区域的CaCO3含量进行了测试。为了溶解沉淀的碳酸盐,在HCl溶液(0.1 M)中清洗干MICP处理的样品,然后冲洗、排空和烘干48小时。酸洗前后样品质量的差异值被认为是MICP处理样品中沉淀的碳酸盐的质量。CaCO3内容以样本重量的百分比表示。浸没?…

Discussion

本文提出了浸没的MICP技术。土壤样品被浸入批次反应器中,在MICP过程中被凝固介质完全渗透。在该方法中,应用全接触柔性模具、刚性全接触模具和芯砖模具制备MICP处理样品。

可针对不同的几何形状设计不同的模具。土工布纤维结构增加了沙与固结介质的接触面积,有效地增加了固结介质对土壤样品的渗透。大量的土工毛孔还使模具内部发生更多的降水,以提高MICP处理样?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家科学基金会第1531382号赠款和MarTREC的支持。

Materials

Ammonium Chloride, >99% Bio-world 40100196-3 (705033)
Ammonium Sulfate Bio-world 30635330-3
Calcium Chloride Dihydrate, >99% Bio-world 40300016-3 (705111)
Nutrient Broth Bio-world 30620056-3
Sodium Bicarbonate, >99% Bio-world 41900068-3 (705727)
Sporosarcina pasteurii American Type Culture Collection ATCC 11859
Synthetic fiber FIBERMESH Fibermesh 150e3
Tris-Base, Biotechnology Grade, >99.7% Bio-world 42020309-2 (730205)
Urea, USP Grade, >99% Bio-world 42100008-2 (705986)
Yeast Extract Bio-world 30620096-3 (760095)

Referências

  1. Cheng, L., Shahin, M. A., Mujah, D. Influence of key environmental conditions on microbially induced cementation for soil stabilization. Journal of Geotechnical and Geoenvironmental Engineering. 143 (1), 04016083-04016091 (2016).
  2. Whiffin, V. S., van Paassen, L. A., Harkes, M. P. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal. 24 (5), 417-423 (2007).
  3. van Paassen, L. A., Ghose, R., van der Linden, T. J., van der Star, W. R., van Loosdrecht, M. C. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of Geotechnical And Geoenvironmental Engineering. 136 (12), 1721-1728 (2010).
  4. Montoya, B. M., DeJong, J. T. Stress-strain behavior of sands cemented by microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering. 141 (6), 04015019 (2015).
  5. DeJong, J. T., Fritzges, M. B., Nüsslein, K. Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering. 132 (11), 1381-1392 (2006).
  6. Zhao, Q., et al. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering. 26 (12), 04014094 (2014).
  7. Castanier, S., Le Métayer-Levrel, G., Perthuisot, J. P. Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sedimentary Geology. 126 (1-4), 9-23 (1999).
  8. Burne, R. A., Chen, Y. Y. M. Bacterial ureases in infectious diseases. Microbes and Infection. 2 (5), 533-542 (2000).
  9. Bernardi, D., DeJong, J. T., Montoya, B. M., Martinez, B. C. Bio-bricks: biologically cemented sandstone bricks. Construction and Building Materials. 55, 462-469 (2014).
  10. Li, M., et al. Influence of fiber addition on mechanical properties of MICP-treated sand. Journal of Materials in Civil Engineering. 28 (4), 04015166 (2015).
  11. Achal, V., Kawasaki, S. Biogrout: a novel binding material for soil improvement and concrete repair. Frontiers in Microbiology. 7, 314 (2016).
  12. Al Qabany, A., Soga, K., Santamarina, C. Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering. 138 (8), 992-1001 (2011).
  13. Lin, H., Suleiman, M. T., Brown, D. G., Kavazanjian, E. Mechanical behavior of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering. 142 (2), 04015066 (2015).
  14. Lauchnor, E. G., Topp, D. M., Parker, A. E., Gerlach, R. Whole cell kinetics of ureolysis by sporosarcina pasteurii. Journal of Applied Microbiology. 118 (6), 1321-1332 (2015).
  15. Nafisi, A., Montoya, B. M. A new framework for identifying cementation level of MICP-treated sands. IFCEE. , (2018).
  16. Zhao, Q., Li, L., Li, C., Zhang, H., Amini, F. A full contact flexible mold for preparing samples based on microbial-induced calcite precipitation technology. Geotechnical Testing Journal. 37 (5), 917-921 (2014).
  17. Bu, C., et al. Development of a Rigid Full-Contact Mold for Preparing Biobeams through Microbial-Induced Calcite Precipitation. Geotechnical Testing Journal. 42 (3), 656-669 (2018).
  18. Li, M., Wen, K., Li, Y., Zhu, L. Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment. Geomicrobiology Journal. 35 (1), 15-22 (2018).
  19. Martinez, B. C., et al. Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering. 139 (4), 587-598 (2013).
check_url/pt/60059?article_type=t

Play Video

Citar este artigo
Liu, S., Du, K., Wen, K., Huang, W., Amini, F., Li, L. Sandy Soil Improvement through Microbially Induced Calcite Precipitation (MICP) by Immersion. J. Vis. Exp. (151), e60059, doi:10.3791/60059 (2019).

View Video