Summary

坐骨神经粉碎损伤大鼠模型中功能评估的3D运动学分析

Published: February 12, 2020
doi:

Summary

我们引入了一种运动分析方法,该方法使用包含四个摄像头和数据处理软件的三维运动捕获装置,用于在涉及啮齿动物模型的基础研究期间执行功能评估。

Abstract

与坐骨功能指数(SFI)相比,运动学分析是一种更可靠、更敏感的方法,用于对坐骨神经损伤啮齿动物模型进行功能评估。在该协议中,我们描述了一种新型的运动学分析方法,该方法使用三维(3D)运动捕获装置,使用大鼠坐骨神经挤压损伤模型进行功能评估。首先,老鼠熟悉跑步机行走。标记然后附加到指定的骨骼地标,老鼠被制造在跑步机上以所需的速度行走。同时,用四台摄像机记录大鼠的后肢运动。根据所使用的软件,使用自动和手动模式创建标记跟踪,并在细微调整后生成所需的数据。这种运动学分析方法使用三维运动捕捉装置,具有许多优点,包括卓越的精度和精度。在综合功能评估期间,可以研究更多的参数。这种方法有几个缺点需要考虑:该系统昂贵,操作起来可能很复杂,并且可能会由于皮肤移位而产生数据偏差。然而,使用3D运动捕捉装置的运动学分析对于执行功能性前肢和后肢评估非常有用。将来,这种方法在生成各种创伤和疾病的准确评估方面可能越来越有用。

Introduction

坐骨功能指数(SFI)是执行功能性坐骨神经评价的基准方法SFI已被广泛采用,并经常在大鼠坐骨神经损伤2,3,4,5,6的各种功能评估研究中使用。尽管它很受欢迎,但SFI存在几个问题,包括自动切割7,联合合同风险,和涂抹脚印8。这些问题严重影响其预后值9。因此,需要一种替代方法,减少容易出错的方法,以替代 SFI。

一种替代方法是运动学分析。这包括使用附加到骨质地标或关节的跟踪标记进行全面的步态分析。运动学分析越来越多地用于功能评估9。这种方法正逐渐被公认为是功能评估10的可靠而敏感的工具,没有SFI11、12的缺点。

在此协议中,我们描述了一系列运动学分析,这些分析使用由跑步机、四台 120 Hz 带电耦合器件 (CCD) 摄像机和数据处理软件组成的 3D 运动捕获设备(参见材料表)。这种运动学分析方法不同于一般视频行走或步态分析13,14。两个摄像机位于不同的方向,用于记录从单个侧面的后肢运动。随后,利用计算机图形9构建了后肢的3D数字模型。通过密切概括实际的肢体尺寸,我们可以计算指定的关节角度,如髋关节、膝盖、脚踝和脚趾关节。此外,我们可以确定各种参数,如步长/步长和姿态相与摆动相的比率。这些重建基于完全由两组摄像机传输的数据生成的后肢的完全重建的 3D 数字模型。即使是假想的重心(CoG)轨迹也可以自动计算。

我们使用这种3D运动捕捉装置来引入和评估多个运动学参数,这些参数揭示了大鼠坐骨神经挤压损伤模型背景下随时间的变化。

Protocol

该协议得到了京都大学动物实验委员会的批准,所有协议步骤均按照京都大学动物实验委员会的指导方针(批准文号:MedKyo17029)执行。 1. 让大鼠熟悉跑步机行走 在跑步机的两侧设置两块透明塑料布,让一只12周大的雄性刘易斯大鼠朝一个直的、朝前的方向行走,然后打开电击网。 让每只老鼠在跑步机上行走。逐渐将跑步机加速到所需的速度(20 厘米/秒或 12 m…

Representative Results

我们选择了四个参数来研究大鼠坐骨神经粉碎损伤模型中随时间的变化。这些是”脚趾关闭”阶段9中姿态与摆动相、重心 (CoG) 轨迹、脚踝角度和脚趾角的比率。24只大鼠被随机分配到四组之一:对照组(C),大鼠在第一(1w),第三(3w)和第六(6w)周后左坐骨神经粉碎损伤。 通过3D运动学分析,自动计算并在界面上表示10步周期中姿态或摆动相位的平均?…

Discussion

在此协议中,稳定和连续行走的大鼠是运动学分析中最重要的组成部分。跑步机速度设置为20厘米/s。如果老鼠移动时没有空间限制这种行走速度绝不被认为是”高”。然而,这种速度太快,未经训练的老鼠无法在跑步机上稳态行走,并可能导致步态异常和不均匀的动作。这些事件可能会严重影响数据的可靠性和真实性。然而,低于20厘米/秒的跑步机速度可能导致大鼠间歇性地停?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究得到了JSPS KAKENHI授权号JP19K19793、JP18H03129和JP18K19739的支持。

Materials

9-0 nylon suture Bear Medic Corporation. T06A09N20-25
Anesthetic Apparatus for Small Animals SHINANO MFG CO.,LTD. SN-487-0T
ISOFLURANE Inhalation Solution Pfizer Japan Inc. (01)14987114133400
Kine Analyzer KISSEI COMTEC CO.,LTD. N.A. A analysis software
Liquid adhesive KANBO PRAS CORPORATION PT-B180
Micro forceps BRC CO. 16171080
Motion Recorder KISSEI COMTEC CO.,LTD. N.A. A recording software
Standard surgical hemostat Fine Science Tools, Inc. 12501-13
Surgical blade No.10 FEATHER Safety Razor CO., LTD 100D
Surgical hemostat World Precision Instruments 503740
Three-dimensional motion capture apparatus (KinemaTracer for Animal) KISSEI COMTEC CO.,LTD. N.A. A 3D motion analysis system that consists of cameras
Three-dimensional(3D) Calculator KISSEI COMTEC CO.,LTD. N.A. A marker tracing software
Treadmill MUROMACHI KIKAI CO.,LTD MK-685 a treadmill with affialiated the electrical schocker, transparent sheats and a speed control apparatus

Referências

  1. Kanaya, F., Firrell, J. C., Breidenbach, W. C. Sciatic function index, nerve conduction tests, muscle contraction, and axon morphometry as indicators of regeneration. Plastic and Reconstructive Surgery. 98 (7), 1264-1274 (1996).
  2. Takhtfooladi, M. A., Jahanbakhsh, F., Takhtfooladi, H. A., Yousefi, K., Allahverdi, A. Effect of low-level laser therapy (685 nm, 3 J/cm(2)) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers in Medical Science. 30 (3), 1047-1052 (2015).
  3. Xing, H., Zhou, M., Assinck, P., Liu, N. Electrical stimulation influences satellite cell differentiation after sciatic nerve crush injury in rats. Muscle & Nerve. 51 (3), 400-411 (2015).
  4. Yang, C. C., Wang, J., Chen, S. C., Jan, Y. M., Hsieh, Y. L. Enhanced functional recovery from sciatic nerve crush injury through a combined treatment of cold-water swimming and mesenchymal stem cell transplantation. Neurological Research. 37 (90), 816-826 (2015).
  5. Jiang, W., et al. Low-intensity pulsed ultrasound treatment improved the rate of autograft peripheral nerve regeneration in rat. Scientific Reports. 6, 22773 (2016).
  6. Ni, X. J., et al. The Effect of Low-Intensity Ultrasound on Brain-Derived Neurotropic Factor Expression in a Rat Sciatic Nerve Crushed Injury Model. Ultrasound in Medicine & Biology. 43 (2), 461-468 (2017).
  7. Weber, R. A., Proctor, W. H., Warner, M. R., Verheyden, C. N. Autotomy and the sciatic functional index. Microsurgery. 14 (5), 323-327 (1993).
  8. Dellon, A. L., Mackinnon, S. E. Sciatic nerve regeneration in the rat. Validity of walking track assessment in the presence of chronic contractures. Microsurgery. 10 (3), 220-225 (1989).
  9. Wang, T., et al. Functional evaluation outcomes correlate with histomorphometric changes in the rat sciatic nerve crush injury model : A comparison between sciatic functional index and kinematic analysis. PLoS One. 13 (12), e0208985 (2018).
  10. de Ruiter, G. C., et al. Two-dimensional digital video ankle motion analysis for assessment of function in the rat sciatic nerve model. Journal of the Peripheral Nervous System. 12 (3), 216-222 (2007).
  11. Walker, J. L., Evans, J. M., Meade, P., Resig, P., Sisken, B. F. Gait-stance duration as a measure of injury and recovery in the rat sciatic nerve model. Journal of Neuroscience Methods. 52 (1), 47-52 (1994).
  12. Dijkstra, J. R., Meek, M. F., Robinson, P. H., Gramsbergen, A. Methods to evaluate functional nerve recovery in adult rats: walking track analysis, video analysis and the withdrawal reflex. Journal of Neuroscience Methods. 96 (2), 89-96 (2000).
  13. Lee, J. Y., et al. Functional evaluation in the rat sciatic nerve defect model: a comparison of the sciatic functional index, ankle angles, and isometric tetanic force. Plastic and Reconstructive Surgery. 132 (5), 1173-1180 (2013).
  14. Rui, J., et al. Gait cycle analysis: parameters sensitive for functional evaluation of peripheral nerve recovery in rat hind limbs. Annals of Plastic Surgery. 73 (4), 405-411 (2014).
  15. Yu, P., Matloub, H. S., Sanger, J. R., Narini, P. Gait analysis in rats with peripheral nerve injury. Muscle & Nerve. 24 (2), 231-239 (2001).
  16. Amado, S., et al. The sensitivity of two-dimensional hindlimb joint kinematics analysis in assessing functional recovery in rats after sciatic nerve crush. Behavioural Brain Research. 225 (2), 562-573 (2011).
  17. Monte-Raso, V. V., Barbieri, C. H., Mazzer, N., Yamasita, A. C., Barbieri, G. Is the Sciatic Functional Index always reliable and reproducible?. Journal of Neuroscience Methods. 170 (2), 255-261 (2008).
  18. Varejao, A. S. P., et al. Motion of the foot and ankle during the stance phase in rats. Muscle & Nerve. 26 (5), 630-635 (2002).
  19. Lin, F. M., Pan, Y. C., Hom, C., Sabbahi, M., Shenaq, S. Ankle stance angle: a functional index for the evaluation of sciatic nerve recovery after complete transection. Journal of Reconstructive Microsurgery. 12 (3), 173-177 (1996).
  20. Patel, M., et al. Video-gait analysis of functional recovery of nerve repaired with chitosan nerve guides. Tissue Engineering. 12 (11), 3189-3199 (2006).
  21. Filipe, V. M., et al. Effect of skin movement on the analysis of hindlimb kinematics during treadmill locomotion in rats. Journal of Neuroscience Methods. 153 (1), 55-61 (2006).
  22. Tajino, J., et al. Three-dimensional motion analysis for comprehensive understanding of gait characteristics after sciatic nerve lesion in rodents. Scientific Reports. 8 (1), 13585 (2018).
check_url/pt/60267?article_type=t

Play Video

Citar este artigo
Wang, T., Ito, A., Tajino, J., Kuroki, H., Aoyama, T. 3D Kinematic Analysis for the Functional Evaluation in the Rat Model of Sciatic Nerve Crush Injury. J. Vis. Exp. (156), e60267, doi:10.3791/60267 (2020).

View Video