Summary

小鼠大脑细胞核巴沙里斯中胆碱能纤维长度的立体估计

Published: February 05, 2020
doi:

Summary

大脑区域三维结构内的神经元纤维长度是量化特定神经元结构完整性或退化的可靠参数。本文详细介绍了一种立体定量方法,以小鼠Meynert细胞核基质内胆碱能纤维长度为例。

Abstract

不同大脑区域的胆碱能或其他神经元轴子的长度通常与该区域的特定功能相关。立体学是量化各种大脑结构神经元特征的有用方法。在这里,我们提供一个基于软件的立体学协议,以估计基底前脑Meynert(NBM)细胞核基底中胆碱能纤维的总长度。该方法使用空间球探头进行长度估计。胆碱能纤维通过胆碱乙酰转移酶(ChAT)免疫染色与马萝卜过氧化物酶-二氨基苯甲酸酯(HRP-DAB)检测系统可视化。使用立体学软件,染色协议对于各种大脑区域的纤维和细胞数估计也有效。立体学协议可用于估计任何线性轮廓,如胆囊状纤维、多巴胺可列菌纤维/二代胺纤维、血清素纤维、星形细胞过程,甚至血管型材。

Introduction

大脑中神经纤维长度和/或密度的定量估计是神经病理学研究的重要参数。不同大脑区域的胆碱能、多巴胺能和血清素轴子的长度通常与该区域的特定功能相关。由于这些斧子的分布通常是异构的,因此使用基于设计的立体学来避免采样过程中的偏差。立体学的空间球探针被设计为在感兴趣的区域提供高效可靠的线状结构,如神经元纤维。探头制作一个虚拟球体,在组织中系统地施加,以测量与探头表面的线交交。由于不可能将球体探头放入组织进行分析,因此市售软件提供了一个虚拟的三维(3D)球体,基本上就是代表球体探头表面的一系列不同直径的同心圆。

选择性胆碱能神经退化是阿尔茨海默氏病(AD)2、3、4的一贯特征之一。功能失调的胆碱能传输被认为是AD认知衰退的一个致能因素。胆碱功能障碍在许多其他精神障碍中也很明显,如帕金森氏症、成瘾和精神分裂症。在动物模型中研究了胆碱能神经退化的不同方面(例如,减少乙酰胆碱5,ChAT蛋白6,淀粉样斑块6附近的胆碱能纤维神经退化,减少胆碱能纤维和突触性静脉曲张7,8)。纤维退化被认为比神经元损失更早发生,因为在研究中并不总是观察到胆碱能神经元损失。大多数胆碱能神经元在基底前脑和脑干,其轴突项目到各种大脑区域,如皮质和海马。NBM位于基础前脑,发现是AD中常见的大脑区域之一。

立体学的分馏方法基于多级组织的系统随机采样。截面采样分数(SSF)是立体学分馏法中基于计算机的节面系统采样。面积采样分数 (ASF) 是该节中感兴趣区域的分馏。厚度采样分数 (TSF) 是截面厚度的分馏。空间球探头允许我们在分数位置对 3D 球体中感兴趣的轮廓进行量化。在这里,我们使用空间球探针来估计小鼠大脑NBM中胆碱能纤维的总长度,以说明这些过程。目前的方案提供了有关组织处理的细节,立体学的采样方法,使用ChAT抗体的免疫组织化学染色,以及用于估计小鼠大脑NBM中胆碱能纤维长度和纤维密度的无偏立体学。

Protocol

使用这些动物的所有程序都已获得堪萨斯城退伍军人事务医疗中心机构动物护理和使用委员会的批准。实验中,18个月大的小鼠过度表达瑞典突变β-淀粉样蛋白前体蛋白(APPswe)及其C57/BL6 WT杂物。育种和基因分型的细节在He等人8。 1. 灌注和组织处理 使用氯胺酮(100毫克/千克)和木拉津(10毫克/千克)注射,对小鼠进行麻醉。捏脚趾,以确认缺乏反?…

Representative Results

代表性结果如图1和图5所示。被解码为APpswe群(APP)的C组,其纤维长度(图5B)和纤维长度密度(图5C)与其野生型(WILD)杂物相比,具有显著降低。结果表明,所分析的两组国家/地区NBM的体积无显著差异(图5A)。 <p class="jove_content" fo:keep-together.within-p…

Discussion

在这里,我们演示了一种使用空间球(球)探测器估计NBM中胆碱能纤维密度的方法。此探头估计了感兴趣区域的总光纤长度。总长度可以除以区域的体积来获得光纤密度。为了估计区域的体积,使用了卡瓦利埃里点计数方法。Cavalieri 点计数方法是对任何区域的 3D 参考体积的无偏和高效的估计。该方法通过计算点(表示面积分数)计算截面上截面上的面积估计值,然后乘以分析为 11</…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了退伍军人事务部医学研究与发展处(功绩审查1I01 BX001067-01A2)、阿尔茨海默氏症协会(NPSPAD-11-202149)和中西部生物医学资源对W.Z.S.的资助。研究基金会。

Materials

ABC kit Vector Laboratories PK6100
Anti-ChAT Antibody Millipore, MA, USA AB144P
Bovine anti-goat IgG-B Santacruz Biotechnology SC-2347
Bovine Serum, Adult Sigma-Aldrich, St. Louis, MO, USA B9433
Cryostat Lieca Microsystems, Buffalo Grove, IL, USA
Dulbecco's Phosphate Buffered Saline Sigma-Aldrich, St. Louis, MO, USA D5652
Ethylene Glycol Sigma-Aldrich, St. Louis, MO, USA 324558
Glycerol Sigma-Aldrich, St. Louis, MO, USA G2025
Hydrogen Peroxide Sigma-Aldrich, St. Louis, MO, USA H1009
Immpact-DAB kit Vector Laboratories SK4105 Enhanced DAB peroxidase substrate solution
Ketamine Westward Pharmaceuticals, NJ, USA 0143-9509-01
Microscope Lieca Microsystems, Buffalo Grove, IL, USA AF6000 Equipped with motorized stage and IMI-tech color digital camera
Optimum cutting temperature (O.C.T.) embedding medium Electron Microscopy Sciences, PA, USA 62550-12
Paraformaldehyde Sigma-Aldrich, St. Louis, MO, USA P6148
Permount mounting medium Electron Microscopy Sciences, PA, USA 17986-01
Stereologer Software Stereology Resource Center, Inc. St. Petersburg, FL, USA Stereologer2000 Installed on a Dell Desktop computer.
Triton X-100 Sigma-Aldrich, St. Louis, MO, USA T8787
Trizma Base Sigma-Aldrich, St. Louis, MO, USA T1503 Tris base
Trizma hydrochloride Sigma-Aldrich, St. Louis, MO, USA T5941 Tris hydrochloride
Xylazine Bayer, Leverkusen, Germany Rompun
Xylenes, Histological grade Sigma-Aldrich, St. Louis, MO 534056

Referências

  1. Mouton, P. R., Gokhale, A. M., Ward, N. L., West, M. J. Stereological length estimation using spherical probes. Journal of Microscopy. 206, 54-64 (2002).
  2. Whitehouse, P. J., Price, D. L., Clark, A. W., Long Coyle, J. T., DeLong, M. R. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Annals of Neurology. 10 (2), 122-126 (1981).
  3. Davies, P., Maloney, A. J. Selective loss of central cholinergic neurons in Alzheimer’s disease. The Lancet. 2 (8000), 1403 (1976).
  4. Bartus, R. T., Dean, R. L., Beer, B., Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 217 (4558), 408-414 (1982).
  5. Savonenko, A. Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities. Neurobiology of Disease. 18 (3), 602-617 (2005).
  6. Perez, S. E., Dar, S., Ikonomovic, M. D., DeKosky, S. T., Mufson, E. J. Cholinergic forebrain degeneration in the APPswe/PS1DeltaE9 transgenic mouse. Neurobiology of Disease. 28 (1), 3-15 (2007).
  7. Stokin, G. B. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science. 307 (5713), 1282-1288 (2005).
  8. He, M. GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability. Scientific Reports. 6, 26116 (2016).
  9. JoVE Science Education Database. Lab Animal Research. Anesthesia Induction and Maintenance. Journal of Visualized Experiments. , (2019).
  10. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  11. Mouton, P. R. . Unbiased Stereology-A Concise Guide. , (2011).
  12. West, M. J. Getting started in stereology. Cold Spring Harbor Protocols. 2013 (4), 287-297 (2013).
  13. West, M. J. Space Balls Revisited: Stereological Estimates of Length With Virtual Isotropic Surface Probes. Frontiers in Neuroanatomy. 12, 49 (2018).
  14. Nikolajsen, G. N., Kotynski, K. A., Jensen, M. S., West, M. J. Quantitative analysis of the capillary network of aged APPswe/PS1dE9 transgenic mice. Neurobiology of Aging. 36 (11), 2954-2962 (2015).
  15. Gutierrez-Jimenez, E. Disturbances in the control of capillary flow in an aged APP(swe)/PS1DeltaE9 model of Alzheimer’s disease. Neurobiology of Aging. 62, 82-94 (2018).
  16. Gundersen, H. J., Jensen, E. B., Kieu, K., Nielsen, J. The efficiency of systematic sampling in stereology–reconsidered. Journal of Microscopy. 193, 199-211 (1999).
  17. Zhang, Y. Quantitative study of the capillaries within the white matter of the Tg2576 mouse model of Alzheimer’s disease. Brain and Behavior. 9 (4), 01268 (2019).
  18. McNeal, D. W. Unbiased Stereological Analysis of Reactive Astrogliosis to Estimate Age-Associated Cerebral White Matter Injury. Journal of Neuropathology Experimental Neurology. 75 (6), 539-554 (2016).
  19. Liu, Y. Passive (amyloid-beta) immunotherapy attenuates monoaminergic axonal degeneration in the AbetaPPswe/PS1dE9 mice. Journal of Alzheimer’s Disease. 23 (2), 271-279 (2011).
  20. Gagnon, D. Evidence for Sprouting of Dopamine and Serotonin Axons in the Pallidum of Parkinsonian Monkeys. Frontiers of Neuroanatomy. 12, 38 (2018).
  21. Boncristiano, S. Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis. Journal of Neuroscience. 22 (8), 3234-3243 (2002).

Play Video

Citar este artigo
Singh, P., Peng, D. W., Suo, W. Z. Stereological Estimation of Cholinergic Fiber Length in the Nucleus Basalis of Meynert of the Mouse Brain. J. Vis. Exp. (156), e60405, doi:10.3791/60405 (2020).

View Video