Summary

冠状血管化后心血管预后冠状动脉祖细胞和可溶性生物标志物

Published: January 28, 2020
doi:

Summary

严重不良心血管事件的发展,影响冠状血管后心血管预后,受冠状动脉损伤和血管修复程度的影响。使用新型冠状细胞和可溶性生物标志物,对血管损伤和修复反应,有助于预测MACEs的发展和预后。

Abstract

重大心血管不良事件 (MACEs) 对冠状血管化患者的心血管预后产生负面影响,因为冠状缺血损伤。冠状动脉损伤的程度和血管修复机制是影响MACEs未来发展的因素。内血管特征,如斑块特征和冠状动脉复杂性已证明MACEs的预后信息。然而,冠状动脉内循环生物标志物的使用已被假定为早期识别和预后MACE的一种方便方法,因为它们更密切地反映了涉及冠状动脉损伤和修复的动态机制。血管成形术期间冠状循环生物标志物的测定,如单核祖细胞(MPCs)的亚种群数量,以及反映炎症、细胞粘附和修复的可溶性分子的浓度,允许评估未来的发展和MACEs的预后6个月冠状血管性血管性。该方法的转化性与外周血液循环生物标志物相比,在预测MACEs方面性能更好,对心血管预后的影响,可应用于患者的风险分层冠状动脉疾病经历血管性。

Introduction

冠状血管化和支架是冠状动脉疾病 (CAD) 患者的抢救程序。然而,重大心血管不良事件(MACEs),包括心血管死亡、心肌梗死、冠状动脉恢复症和心绞痛发作或心力衰竭,可能在冠状动脉介入后数月发生,导致不定期到医院就诊。MACEs在全世界很普遍,其死亡率很高

冠状缺血损伤诱导早期血管反应和重组机制,涉及动员MPC由于其分化能力和/或血管抑制电位,以及可溶性分子,如细胞间粘附分子(ICAM),基质金属蛋白酶(MMPs)和反应氧物种,反映细胞粘附,组织重塑和氧化应激。虽然内在血管特征,如斑块特征和冠状动脉复杂性已经被用来预测MACEs,一些研究表明,与冠状内皮发生损伤和修复机制相关的生物标志物对于CAD提交冠状血管成形的2、3、4、5患者的心血管事件的早期识别和预后非常有用。

持续的兴趣,了解CAD损伤和修复背后的机制,促使研究者研究冠状循环生物标志物,因为冠状动脉取样更密切地反映血管损伤和修复6。然而,在人类研究中,冠状生物标志物的表征一直很少,7、8、9。因此,本研究的目的是描述一种确定冠状循环MPC和可溶性分子的量的方法,反映血管损伤和修复,并表明这些生物标志物是否与MACE和接受冠状血管化的CAD患者的临床预后有关。该方法基于使用血管相关、循环的MpCs和可溶性分子,通过采样最接近血管损伤的位置获得。对于下肢缺血、中风、血管炎、静脉血栓和其他涉及血管损伤和修复的损伤的临床研究,它也可能有用。

Protocol

该协议符合人类研究伦理委员会的体制准则。 1. 冠状血管造影、超声和血液取样 在冠状动脉介入之前,请求基线临床和人口统计信息。收集个人数据:年龄、性别、当前吸烟状态、体重指数(BMI)、高血压、血脂异常、糖尿病、药物和当前冠状血管造影指标。 使用径向方法通过心脏导管进行冠状血管造影。此程序应在由专家心脏病学家在血管动力学室的荧光?…

Representative Results

从52名接受冠状血管造影的患者中采集冠状、静脉坐宗和外周血(图1),显示高血压和血脂异常的高患病率。在临床随访中,11 (21.1%)在冠状血管造影术发生6个月后,MACEs:死亡(n = 1),需要住院治疗的心绞痛(n = 6),心肌梗死(n = 2),和/或心力衰竭的证据(n = 4)。 大多数MPC的基线冠状动脉浓度…

Discussion

从受影响的冠状动脉采集血液可能很困难。有时,冠状动脉几乎无法到达。在这种情况下,从静脉主塞采样可能是一种选择。我们进行了验证测试,比较冠状动脉中的循环生物标志物与静脉阴热,没有显著差异。然而,循环生物标志物的性能只用于冠状动脉取样。因此,从静脉主塞获得的生物标志物的性能仍有待探索。

最好在采血后的前 3 小时内处理 MpC 的样本。因此,心脏…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢机构计划E015的支持;和Fondo部门FOSSIS-CONACYT,SALUD-2014-1-233947。

Materials

BSA Roche 10735086001 Bovine Serum Albumin (BSA) as a buffering agent, stabilizer, standard and for blending.
Calibration Beads Miltenyi Biotec / MACS #130-093-607 MACQuant calibration beads are supplied in aqueous solution containing 0.05% sodium azide. 3.5 ml for up to 100 tests
CD133/1 (AC133)-PE Milteny Biotec / MACS #130-080-801 Antibody conjugated to R-Phycoerythrin in PBS/EDTA buffer
CD184 (CXCR4)-PE-VIO770 Miltenyi Biotec / MACS #130-103-798 Monoclonal, Isotype recombinant human IgG1, conjugated
CD309 (VEGFR-2/KDR)-APC Miltenyi Biotec / MACS #130-093-601 Antibody conjugated to R-Phycoerythrin in PBS/EDTA buffer
CD34-FITC Miltenyi Biotec / MACS #130-081-001 The monoclonal antibody clone AC136 detecs a class III epitope of the CD34
CD45- VioBlue Miltenyi Biotec / MACS #130-092-880 Monoclonal CD45 Antibody, human conjugated
Conical Tubes Thermo SCIENTIFIC #339651 15ml conical centrifuge tubes
Cytometry Tubes FALCON Corning Brand #352052 5 mL Polystyrene Round-Bottom Tube. 12×75 style. Sterile.
EDTA BIO-RAD #161-0729 Heavy metals, (as Pb) <10ppm, Fe <0.01%, As <1ppm, Insolubles <0.005%
Improved Neubauer Without brand Without catalog number Hemocytometer for cell counting. (range 0.1000mm, 0.0025mm2)
K2 EDTA Blood Collection Tubes BD Vacutainer #367863 Lilac plastic vacutainer tube (K2E) 10.8mg, 6 mL.
Lymphoprep Stemcell Technologies 01-63-12-002-A Sterile and checked on the presence of endotoxins. Density: 1.077±0.001g/mL
Paraformaldehyde SIGMA-ALDRICH #SZBF0920V Fixation of biological samples, (powder, 95%)
Pipette Transfer 1,3mL CRM Globe PF1016, PF1015 The transfer pipette is a tool that facilitates liquid transfer with greater accuracy.
Test Tubes KIMBLE CHASE 45060 13100 Heat-resistant test tubes. SIZE/CAP 13 x 100 mm

Referências

  1. Cassar, A., Holmes, D. R., Rihal, C. S., Gersh, B. J. Chronic coronary artery disease: diagnosis and management. Mayo Clinic Proceedings. 84 (12), 1130-1146 (2009).
  2. Regueiro, A., et al. Mobilization of endothelial progenitor cells in acute cardiovascular events in the PROCELL study: time-course after acute myocardial infarction and stroke. Journal of Molecular and Cellular Cardiology. 80, 146-155 (2015).
  3. Sen, S., McDonald, S. P., Coates, P. T., Bonder, C. S. Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clinical Science (Lond). 120 (7), 263-283 (2011).
  4. Samman Tahhan, A., et al. Progenitor Cells and Clinical Outcomes in Patients With Acute Coronary Syndromes. Circulation Research. 122 (11), 1565-1575 (2018).
  5. Tomulić, V., Gobić, D., Lulić, D., Židan, D., Zaputović, L. Soluble adhesion molecules in patients with acute coronary syndrome after percutaneous coronary intervention with drug-coated balloon, drug-eluting stent or bare metal stent. Medical Hypotheses. 95, 20-23 (2016).
  6. Jaumdally, R., Varma, C., Macfadyen, R. J., Lip, G. Y. Coronary sinus blood sampling: an insight into local cardiac pathophysiology and treatment?. European Heart Journal. 28 (8), 929-940 (2007).
  7. Kremastinos, D. T., et al. Intracoronary cyclic-GMP and cyclic-AMP during percutaneous transluminal coronary angioplasty. International Journal of Cardiology. 53 (3), 227-232 (1996).
  8. Karube, N., et al. Measurement of cytokine levels by coronary sinus blood sampling during cardiac surgery with cardiopulmonary bypass. American Society for Artificial Internal Organs Journal. 42 (5), M787-M791 (1996).
  9. Truong, Q. A., et al. Coronary sinus biomarker sampling compared to peripheral venous blood for predicting outcomes in patients with severe heart failure undergoing cardiac resynchronization therapy: the BIOCRT study. Heart Rhythm. 11 (12), 2167-2175 (2014).
  10. Suárez-Cuenca, J. A., et al. Coronary circulating mononuclear progenitor cells and soluble biomarkers in the cardiovascular prognosis after coronary angioplasty. Journal of Cellular and Molecular Medicine. 23 (7), 4844-4849 (2019).
  11. Suárez-Cuenca, J. A., et al. Relation of Coronary Artery Lumen with Baseline, Post-angioplasty Coronary Circulating Pro-Inflammatory Cytokines in Patients with Coronary Artery Disease. Angiology Open Access. 7, 01 (2019).
  12. Schmidt-Lucke, C., et al. Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PLoS One. 5 (1), e13790 (2010).
  13. Moyer, C. F., Sajuthi, D., Tulli, H., Williams, J. K. Synthesis of IL-1 alpha and IL-1 beta by arterial cells in atherosclerosis. American Journal of Pathology. 138 (4), 951-960 (1991).
  14. Morales-Portano, J. D., et al. Echocardiographic measurements of epicardial adipose tissue and comparative ability to predict adverse cardiovascular outcomes in patients with coronary artery disease. International Journal of Cardiovascular Imaging. 34 (9), 1429-1437 (2018).
  15. Huang, X., et al. Endothelial progenitor cells correlated with oxidative stress after mild traumatic brain injury. Yonsei Medical Journal. 58 (5), 1012-1017 (2017).
check_url/pt/60504?article_type=t

Play Video

Citar este artigo
Suárez-Cuenca, J. A., Robledo-Nolasco, R., Alcántara-Meléndez, M. A., Díaz-Hernandez, L. J., Vera-Gómez, E., Hernández-Patricio, A., Sánchez-Díaz, K. S., Gutiérrez-Buendía, J. A., Contreras-Ramos, A., Ruíz-Hernández, A. S., Pérez-Cabeza de Vaca, R., Mondragón-Terán, P. Coronary Progenitor Cells and Soluble Biomarkers in Cardiovascular Prognosis after Coronary Angioplasty. J. Vis. Exp. (155), e60504, doi:10.3791/60504 (2020).

View Video