Summary

In Vivo Infectie met Leishmania amazonensis om parasiet virultie in muizen te evalueren

Published: February 20, 2020
doi:

Summary

Hier presenteren we een samengesteld protocol om de cutane infectie van muizen met Leishmania amazonensiste evalueren. Dit is een betrouwbare methode voor het bestuderen van parasietvirulentie, waardoor een systemische weergave van de gewervelde gastheer respons op de infectie.

Abstract

Leishmania spp. zijn protozoan parasieten die leishmaniases veroorzaken, ziekten die een breed spectrum van klinische manifestaties van cutane tot viscerale laesies presenteren. Momenteel, 12 miljoen mensen worden geschat te zijn besmet met Leishmania wereldwijd en meer dan 1 miljard mensen leven op het risico van infectie. Leishmania amazonensis is endemisch in Midden- en Zuid-Amerika en leidt meestal tot de cutane vorm van de ziekte, die direct kan worden gevisualiseerd in een diermodel. Daarom zijn L. amazonensis stammen goede modellen voor cutane leishmaniasis studies omdat ze ook gemakkelijk worden gekweekt in vitro. C57BL/6 muizen bootsen de L. amazonensis-gedrevenziekteprogressie na die bij mensen wordt waargenomen en worden beschouwd als een van de beste muizenstammenmodel voor cutane leishmaniasis. In de gewervelde gastheer bewonen deze parasieten macrofagen ondanks de afweermechanismen van deze cellen. Verschillende studies gebruiken in vitro macrofaag infectie testen om de parasiet infectiviteit te evalueren onder verschillende omstandigheden. De in vitro benadering is echter beperkt tot een geïsoleerd celsysteem dat de reactie van het organisme negeert. Hier compileren we een in vivo murineinfectiemethode die een systemisch fysiologisch overzicht biedt van de interactie tussen gastheer en parasiet. Het gedetailleerde protocol voor de in vivo infectie van C57BL/6 muizen met L. amazonensis omvat parasietdifferentiatie in besmettelijke amastigoten, muizen voetpad cutane inenting, laesie ontwikkeling, en parasiet belasting bepaling. Wij stellen deze gevestigde methode voor als de meest geschikte methode voor fysiologische studies van de gastheer immuun- en metabole reacties op cutane leishmaniasis.

Introduction

Leishmaniases zijn wereldwijd voorkomende parasitaire infectieziekten die belangrijke uitdagingen in ontwikkelingslanden vertegenwoordigen en worden door de Wereldgezondheidsorganisatie1,2erkend als een van de belangrijkste verwaarloosde tropische ziekten. De leishmaniasen worden gekenmerkt door cutane, slijmvlies, en / of viscerale manifestaties. Cutane leishmaniasis wordt meestal veroorzaakt door L. amazonensis, L. mexicana, L. braziliensis, L. guyanensis, L. major, L. tropica en L. aethiopica3. Deze vorm van de ziekte is vaak zelfherstellend bij de mens als gevolg van de inductie van beschermende cellulaire immuunrespons. Echter, de cellulaire immuunrespons kan mislukken, en de ziekte kan vooruitgang boeken om te verspreiden cutane leishmaniasis4,5. Er is geen vaccin beschikbaar vanwege de diversiteit onder Leishmania soorten en gastheer genetische achtergronden6,7. Behandelingsopties zijn ook beperkt omdat de meeste momenteel beschikbare geneesmiddelen duur, giftig en/of langdurige behandeling vereisen8,9. Bovendien zijn er meldingen van resistentie tegen geneesmiddelen tegen de beschikbare behandelingen10,11.

De veroorzaker van leishmaniases is de protozoan parasiet Leishmania. De parasiet presenteert twee verschillende morfologische vormen in zijn levenscyclus: promastigoten, de flagellated vorm gevonden in zandvliegen; en amastigoten, de intracellulaire vorm gevonden in de parasitophoreuze vacuoles van de zoogdiergastheer macrofagen12,13. Amastigotes ‘ vermogen om binnen te vallen, overleven, en repliceren, ondanks de verdediging mechanismen van de gewervelde gastheer macrofagen zijn onderworpen aan vele studies14,15,16,17. Bijgevolg hebben verschillende onderzoeksgroepen in vitro macrofaaginfectietests beschreven om de impact van specifieke omgevingsfactoren te evalueren, evenals parasiet- en gastheergenen op infectiviteit van parasieten. Deze test biedt verschillende voordelen, zoals het vermogen om studies aan te passen aan een hoog doorvoerformaat, een relatief kortere periode om resultaten te verkrijgen en een verminderd aantal geofferde proefdieren18. De bevindingen van in vitro tests zijn echter beperkt omdat ze niet altijd repliceren in vivo studies14,19,20,21. In vivo testen bieden een systemisch fysiologisch overzicht van de host-parasiet interactie, die niet volledig kan worden nagebootst door in vitro testen. Immunologische studies kunnen bijvoorbeeld worden uitgevoerd door middel van immunohistochemische testen van verzamelde delen van het voetpadweefsel of zelfs van popliteale lymfeklieren voor analyse van de teruggewonnen immuuncellen22.

Dieren worden vaak gebruikt als model voor menselijke ziekten in biologisch en biomedisch onderzoek om de onderliggende fysiologische mechanismen van de ziekten beter te begrijpen23. In het geval van leishmaniasis beïnvloedt de route, de plaats of de dosis inenting de uitkomst van de ziekte24,25,26,27. Bovendien worden de gevoeligheid en de weerstand tegen de infectie bij mensen en muizen sterk gereguleerd door de genetische achtergronden van de gastheer en parasiet4,5,22,28,29,30,31. BALB/c muizen zijn zeer gevoelig voor L. amazoneensinfectie, die een snelle ziekteprogressie vertonen met de verspreiding van de parasieten naar de lymfeklieren, milt en lever32. Aangezien de ziekte kan vorderen tot cutane metastasen, kan de infectie fataal zijn. C57BL/6 muizen ontwikkelen daarentegen vaak chronische laesies met aanhoudende parasietbelastingen in L. amazonensis-infectie assays33. Daarbij, L. amazonensis infectie met deze bijzondere muissoort is beschouwd als een uitstekend model om chronische vormen van cutane leishmaniasis bij de mens te bestuderen, omdat het bootst de ziekte progressie beter dan de BALB / c muizen infectie model5,34.

Daarom stellen we voor dat de murine in vivo infectie een nuttige methode is voor Leishmania virulentie fysiologische studies die van toepassing zijn op de menselijke ziekte, waardoor een systemisch beeld van de interactie tussen gastheer en parasiet mogelijk is. Herbezoeken gevestigde assays22, presenteren we hier een gecompileerde stap-voor-stap protocol van de in vivo infectie van C57BL / 6 muizen met L. amazonensis die de parasiet differentiatie in axenic amastigotes, muizen voetpad cutane inenting, laesie ontwikkeling, en parasiet belasting bepaling omvat. Dit protocol kan worden aangepast aan andere muizenstammen en Leishmania soorten die cutane leishmaniases veroorzaken. Tot slot, de hier gepresenteerde methode is cruciaal bij het identificeren van nieuweanti-Leishmania drug doelen en vaccins, evenals in fysiologische studies van de gastheer immuun en metabole reacties op Leishmania infectie.

Protocol

Alle experimentele procedures zijn goedgekeurd door het Comité voor dierenwelzijn en gebruik van het Instituut voor Biowetenschappen van de Universiteit van São Paulo (CEUA 342/2019), en werden uitgevoerd in overeenstemming met de aanbevelingen en het beleid voor de verzorging en het gebruik van proefdieren van de staat São Paulo (Lei Estadual 11.977, de 25/08/2005) en de Braziliaanse regering (Lei Federal 11.794, de 08/10/2008). Alle stappen beschreven in secties 1-5 moeten aseptisch worden uitgevoerd in laminaire st…

Representative Results

Leishmania protozoan parasieten bestaan in twee ontwikkelingsvormen tijdens hun levenscyclus in ongewervelde en gewervelde gastheren: promastigoten, de proliferative vormen gevonden in het lumen van de vrouwelijke zandvlieg; en amastigoten, de proliferative vormen gevonden in de parasitophoreuze vacuoles van de zoogdiergastheercellen. Promastigoten hebben een langwerpig lichaam van ongeveer 1,5 μm breed en 20 μm lang, met een flagellum die meestal uit de voorste extremiteit tev…

Discussion

De in vivo infectietest beschreven in dit protocol stelt elke onderzoeker in staat om in vivo cutane leishmaniasis te evalueren, gezien de interactie tussen gastheer en parasiet in een systemisch scenario. Deze tests zijn gebruikt door vele groepen22,24,27,29,31,32,34,<sup class="…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We willen prof. dr. Niels Olsen Saraiva Câmara van het Animal Center van het Biomedical Sciences Institute van de Universiteit van São Paulo bedanken voor de steun en prof. dr. Silvia Reni Uliana voor het leveren van de glasweefselmolen. Dit werk werd ondersteund door Sao Paulo Research Foundation (FAPESP – MFLS’ subsidie 2017/23933-3).

Materials

96-well plate Greiner bio-ne 655180 A flat-bottom plate for limiting dilution assay
adenine Sigma A8626 Supplement added to M199 cell culture media
caliper Mitutoyo 700-118-20 A caliper to measure the thickness of footpad
cell culture flask Corning 353014 A 25 cm2 volume cell culture flask to cultivate Leishmania parasite
centrifuge Eppendorf 5804R An equipament used for separating samples based on its density
CO2 incubator 34 °C Thermo Scientific 3110 An incubator for amastigotes differentiation
ethanol Merck K50237083820 A disinfectant for general items
fetal bovine serum Gibco 12657-029 Supplement added to M199 cell culture media
glass tissue grinder tube Thomas Scientific 3431 E04 A tube to collect and disrupt infected footpad tissue
glucose Synth G1008.01.AH Supplement added to M199 cell culture media
GraphPad Prism Software GraphPad A software used to plot the data and calculate statistical significance
hemin Sigma H-2250 Supplement added to M199 cell culture media
HEPES Promega H5303 Supplement added to M199 cell culture media
incubator 25 °C Fanem 347CD An incubator for promastigotes cultivation
inverted microscope Nikon TMS An equipament used to visual analyze the promastigote and amastigote cultures
isoflurane An inhalant anesthetics for mice (3-5%)
laminar flow cabinet Veco VLFS-09 A biosafety cabinet used for aseptical work area
M199 cell culture media Gibco 31100-035 A cell culture media for Leishmania cultivation
microcentrifuge tube Axygen MCT150C A microtube used for sample collection, processing and storage
multichanel pipette Labsystems F61978 A multichannel pipette used for limiting dilution assay
NaHCO3 Merck 6329 Supplement added to M199 cell culture media
NaOH Sigma S8045 Supplement added to M199 cell culture media
Neubauer chamber HBG 2266 A hemocytometer to count the parasite suspension
optical microscope Nikon E200 An optical equipament used to count parasite
parafilm Bemis 349 A flexible and resistant plastic to seal the plate
penicillin/streptomycin Gibco 15140122 Supplement added to M199 cell culture media
Petri dishes TPP 93100 A sterile dish to dissect the footpad tissue
pipetman kit Gilson F167360 A micropipette kit containing four pipettors (P2 P20 P200 P1000)
scale Quimis BG2000 An equipament used to weigh collected footpad lesions
scalpel Solidor 10237580026 A scalpel to cut and collect footpad tissue
serological pipette 10 mL Nest 327001 A sterile pipette used for transfering mililiter volumes
tips Axygen A pipette tip used for transfering microliter volumes
Trypan blue Gibco 15250-061 A dye used to count viable parasites
trypticase peptone Merck Supplement added to M199 cell culture media
tuberculin syringe BD 305945 A syringe with 27G needle to inoculate the parasite suspension

References

  1. Alvar, J., et al. Leishmaniasis worldwide and global estimates of its incidence. PloS One. 7 (5), e35671 (2012).
  2. Ashford, R. W. The leishmaniases as emerging and reemerging zoonoses. International Journal for Parasitololy. 30 (12-13), 1269-1281 (2000).
  3. Burza, S., Croft, S. L., Boelaert, M. Leishmaniasis. Lancet. 392 (10151), 951-970 (2018).
  4. Scorza, B. M., Carvalho, E. M., Wilson, M. E. Cutaneous Manifestations of Human and Murine Leishmaniasis. International Journal of Molecular Sciences. 18 (6), e1296 (2017).
  5. Afonso, L. C., Scott, P. Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis. Infection and Immunity. 61 (7), 2952-2959 (1993).
  6. Khamesipour, A., Rafati, S., Davoudi, N., Maboudi, F., Modabber, F. Leishmaniasis vaccine candidates for development: a global overview. Indian Journal of Medical Research. 123 (3), 423-438 (2006).
  7. Kumar, R., Engwerda, C. Vaccines to prevent leishmaniasis. Clinical & Translational Immunology. 3 (3), e13 (2014).
  8. Murray, H. W., Berman, J. D., Davies, C. R., Saravia, N. G. Advances in leishmaniasis. Lancet. 366 (9496), 1561-1577 (2005).
  9. Hotez, P. J., Bottazzi, M. E., Franco-Paredes, C., Ault, S. K., Periago, M. R. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Neglected Tropical Diseases. 2 (9), e300 (2008).
  10. Croft, S. L., Sundar, S., Fairlamb, A. H. Drug resistance in leishmaniasis. Clinical Microbiology Reviews. 19 (1), 111-126 (2006).
  11. Ponte-Sucre, A., et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Neglected Tropical Diseases. 11 (12), e0006052 (2017).
  12. Teixeira, D. E., et al. The cell biology of Leishmania: how to teach using animations. PLoS Pathogens. 9 (10), e1003594 (2013).
  13. Sunter, J., Gull, K. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biology Journal. 7 (9), 170165 (2017).
  14. Laranjeira-Silva, M. F., et al. A MFS-like plasma membrane transporter required for Leishmania virulence protects the parasites from iron toxicity. PLoS Pathogens. 14 (6), e1007140 (2018).
  15. Aoki, J. I., et al. L-arginine availability and arginase activity: Characterization of amino acid permease 3 in Leishmania amazonensis. PLoS Neglected Tropical Diseases. 11 (10), e0006025 (2017).
  16. Probst, C. M., et al. A comparison of two distinct murine macrophage gene expression profiles in response to Leishmania amazonensis infection. BMC Microbiology. 12, 22 (2012).
  17. Dillon, L. A., et al. Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions. BMC Genomics. 16, 1108 (2015).
  18. Sarkar, A., Khan, Y. A., Laranjeira-Silva, M. F., Andrews, N. W., Mittra, B. Quantification of Intracellular Growth Inside Macrophages is a Fast and Reliable Method for Assessing the Virulence of Leishmania Parasites. Journal of Visualized Experiments. (133), e57486 (2018).
  19. Mittra, B., Laranjeira-Silva, M. F., Miguel, D. C., Perrone Bezerra de Menezes, J., Andrews, N. W. The iron-dependent mitochondrial superoxide dismutase SODA promotes. The Journal of Biological Chemistry. 292 (29), 12324-12338 (2017).
  20. Flannery, A. R., Huynh, C., Mittra, B., Mortara, R. A., Andrews, N. W. LFR1 ferric iron reductase of Leishmania amazonensis is essential for the generation of infective parasite forms. The Journal of Biological Chemistry. 286 (26), 23266-23279 (2011).
  21. Laranjeira-Silva, M. F., Zampieri, R. A., Muxel, S. M., Beverley, S. M., Floeter-Winter, L. M. Leishmania amazonensis arginase compartmentalization in the glycosome is important for parasite infectivity. PloS One. 7 (3), e34022 (2012).
  22. Sacks, D. L., Melby, P. C. Animal models for the analysis of immune responses to leishmaniasis. Current Protocols in Immunology. , (1998).
  23. Andersen, M. L., Winter, L. M. F. Animal models in biological and biomedical research – experimental and ethical concerns. Anais da Academia Brasileira de Ciências. 91, e20170238 (2019).
  24. Ribeiro-Gomes, F. L., et al. Site-dependent recruitment of inflammatory cells determines the effective dose of Leishmania major. Infection and Immunity. 82 (7), 2713-2727 (2014).
  25. Mahmoudzadeh-Niknam, H., Khalili, G., Abrishami, F., Najafy, A., Khaze, V. The route of Leishmania tropica infection determines disease outcome and protection against Leishmania major in BALB/c mice. The Korean Journal of Parasitology. 51 (1), 69-74 (2013).
  26. Oliveira, D. M., et al. Evaluation of parasitological and immunological parameters of Leishmania chagasi infection in BALB/c mice using different doses and routes of inoculation of parasites. Parasitology Research. 110 (3), 1277-1285 (2012).
  27. Côrtes, D. F., et al. Low and high-dose intradermal infection with Leishmania major and Leishmania amazonensis in C57BL/6 mice. Memorias do Instituto Oswaldo Cruz. 105 (6), 736-745 (2010).
  28. Blackwell, J. M., et al. Genetics and visceral leishmaniasis: of mice and man. Parasite Immunology. 31 (5), 254-266 (2009).
  29. Loeuillet, C., Bañuls, A. L., Hide, M. Study of Leishmania pathogenesis in mice: experimental considerations. Parasites & Vectors. 9, 144 (2016).
  30. Alexander, J., Brombacher, F. T Helper1/T Helper2 Cells and Resistance/Susceptibility to Leishmania Infection: Is This Paradigm Still Relevant?. Frontiers in Immunology. 3, 80 (2012).
  31. Sacks, D., Noben-Trauth, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nature Reviews Immunology. 2 (11), 845-858 (2002).
  32. Bogdan, C., et al. Experimental Cutaneous Leishmaniasis: Mouse Models for Resolution of Inflammation Versus Chronicity of Disease. Methods in Molecular Biology. 1971, 315-349 (2019).
  33. Jones, D. E., Ackermann, M. R., Wille, U., Hunter, C. A., Scott, P. Early enhanced Th1 response after Leishmania amazonensis infection of C57BL/6 interleukin-10-deficient mice does not lead to resolution of infection. Infection and Immunity. 70 (4), 2151-2158 (2002).
  34. Velasquez, L. G., et al. Distinct courses of infection with Leishmania (L.) amazonensis are observed in BALB/c, BALB/c nude and C57BL/6 mice. Parasitology. 143 (6), 692-703 (2016).
  35. de Menezes, J. P., et al. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins. Cellular Microbiology. 19 (3), 1266 (2017).
  36. Mittra, B., et al. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence. PLoS Pathogens. 12 (1), e1005340 (2016).
  37. Zilberstein, D., Nitzan Koren, R. Host-Free Systems for Differentiation of Axenic Leishmania. Methods in Molecular Biology. 1971, 1-8 (2019).
  38. Zilberstein, D., Shapira, M. The role of pH and temperature in the development of Leishmania parasites. Annual Review of Microbiology. 48, 449-470 (1994).
  39. Dumetz, F., et al. Modulation of Aneuploidy in Leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. MBio. 8 (3), e00599-e00517 (2017).
  40. Sinha, R., et al. Genome Plasticity in Cultured Leishmania donovani: Comparison of Early and Late Passages. Frontiers in Microbiology. 9, 1279 (2018).
  41. Magalhães, R. D., et al. Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Neglected Tropical Diseases. 8 (4), e2764 (2014).
  42. Lei, S. M., Romine, N. M., Beetham, J. K. Population changes in Leishmania chagasi promastigote developmental stages due to serial passage. Journal of Parasitology. 96 (6), 1134-1138 (2010).
  43. Ali, K. S., Rees, R. C., Terrell-Nield, C., Ali, S. A. Virulence loss and amastigote transformation failure determine host cell responses to Leishmania mexicana. Parasite Immunology. 35 (12), 441-456 (2013).
  44. Rebello, K. M., et al. Leishmania (Viannia) braziliensis: influence of successive in vitro cultivation on the expression of promastigote proteinases. Experimental Parasitology. 126 (4), 570-576 (2010).
  45. Titus, R. G., Marchand, M., Boon, T., Louis, J. A. A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunology. 7 (5), 545-555 (1985).
  46. Lima, H. C., Bleyenberg, J. A., Titus, R. G. A simple method for quantifying Leishmania in tissues of infected animals. Parasitology Today. 13 (2), 80-82 (1997).
  47. Strober, W. Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology. , (1997).
  48. Sacks, D., Kamhawi, S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annual Review of Microbiology. 55, 453-483 (2001).
  49. Reimão, J. Q., et al. Parasite burden in Leishmania (Leishmania) amazonensis-infected mice: validation of luciferase as a quantitative tool. Journal of Microbiological Methods. 93 (2), 95-101 (2013).
  50. Buckley, S. M., et al. In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters. Scientific Reports. 5, 11842 (2015).
  51. Thalhofer, C. J., et al. In vivo imaging of transgenic Leishmania parasites in a live host. Journal of Visualized Experiments. (41), e1980 (2010).
  52. Roberts, S. C., et al. Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutants. The Journal of Biological Chemistry. 279 (22), 23668-23678 (2004).
  53. Boitz, J. M., et al. Arginase Is Essential for Survival of Leishmania donovani Promastigotes but Not Intracellular Amastigotes. Infection and Immunity. 85 (1), e00554 (2017).
  54. Rosas, L. E., et al. Genetic background influences immune responses and disease outcome of cutaneous L. mexicana infection in mice. International Immunology. 17 (10), 1347-1357 (2005).
  55. Belkaid, Y., et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. Journal of Experimental Medicine. 188 (10), 1941-1953 (1998).
  56. Titus, R. G., Ribeiro, J. M. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 239 (4845), 1306-1308 (1988).
  57. Lima, H. C., Titus, R. G. Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infection and Immunity. 64 (12), 5442-5445 (1996).
  58. Theodos, C. M., Ribeiro, J. M., Titus, R. G. Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice. Infection and Immunity. 59 (5), 1592-1598 (1991).
  59. Kaur, S., et al. Effect of dose and route of inoculation on the generation of CD4+ Th1/Th2 type of immune response in murine visceral leishmaniasis. Parasitology Research. 103 (6), 1413-1419 (2008).
  60. Rolão, N., Melo, C., Campino, L. Influence of the inoculation route in BALB/c mice infected by Leishmania infantum. Acta Tropica. 90 (1), 123-126 (2004).
  61. Kébaïer, C., Louzir, H., Chenik, M., Ben Salah, A., Dellagi, K. Heterogeneity of wild Leishmania major isolates in experimental murine pathogenicity and specific immune response. Infection and Immunity. 69 (8), 4906-4915 (2001).
  62. Baldwin, T. M., Elso, C., Curtis, J., Buckingham, L., Handman, E. The site of Leishmania major infection determines disease severity and immune responses. Infection and Immunity. 71 (12), 6830-6834 (2003).
  63. Aoki, J. I., et al. RNA-seq transcriptional profiling of Leishmania amazonensis reveals an arginase-dependent gene expression regulation. PLoS Neglected Tropical Diseases. 11 (10), e0006026 (2017).
  64. Pinto-da-Silva, L. H., et al. The 3A1-La monoclonal antibody reveals key features of Leishmania (L) amazonensis metacyclic promastigotes and inhibits procyclics attachment to the sand fly midgut. International Journal for Parasitology. 35 (7), 757-764 (2005).
  65. Spath, G. F., Beverley, S. M. A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Experimental Parasitology. 99 (2), 97-103 (2001).
  66. Aoki, J. I., Laranjeira-Silva, M. F., Muxel, S. M., Floeter-Winter, L. M. The impact of arginase activity on virulence factors of Leishmania amazonensis. Current Opinion in Microbiology. 52, 110-115 (2019).
  67. Jackson, A. P. The evolution of amastin surface glycoproteins in trypanosomatid parasites. Molecular Biology and Evolution. 27 (1), 33-45 (2010).
  68. Rochette, A., et al. Characterization and developmental gene regulation of a large gene family encoding amastin surface proteins in Leishmania spp. Molecular and Biochemical Parasitology. 140 (2), 205-220 (2005).
  69. Rochette, A., Raymond, F., Corbeil, J., Ouellette, M., Papadopoulou, B. Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Molecular and Biochemical Parasitology. 165 (1), 32-47 (2009).
  70. Schneider, P., Rosat, J. P., Bouvier, J., Louis, J., Bordier, C. Leishmania major: differential regulation of the surface metalloprotease in amastigote and promastigote stages. Experimental Parasitology. 75 (2), 196-206 (1992).
  71. Ji, J., Sun, J., Qi, H., Soong, L. Analysis of T helper cell responses during infection with Leishmania amazonensis. The American Journal of Tropical Medicine and Hygiene. 66 (4), 338-345 (2002).
  72. Ji, J., Sun, J., Soong, L. Impaired expression of inflammatory cytokines and chemokines at early stages of infection with Leishmania amazonensis. Infection and Immunity. 71 (8), 4278-4288 (2003).
  73. Felizardo, T. C., Toma, L. S., Borges, N. B., Lima, G. M., Abrahamsohn, I. A. Leishmania (Leishmania) amazonensis infection and dissemination in mice inoculated with stationary-phase or with purified metacyclic promastigotes. Parasitology. 134 (12), 1699-1707 (2007).
  74. Laranjeira-Silva, M. F., Zampieri, R. A., Muxel, S. M., Floeter-Winter, L. M., Markus, R. P. Melatonin attenuates Leishmania (L.) amazonensis infection by modulating arginine metabolism. Journal of Pineal Research. 59 (4), 478-487 (2015).
check_url/60617?article_type=t

Play Video

Cite This Article
Aoki, J. I., Hong, A., Zampieri, R. A., Floeter-Winter, L. M., Laranjeira-Silva, M. F. In Vivo Infection with Leishmania amazonensis to Evaluate Parasite Virulence in Mice. J. Vis. Exp. (156), e60617, doi:10.3791/60617 (2020).

View Video