Summary

Ex Vivo 加压希马卡毛细管- 功能研究准备

Published: December 18, 2019
doi:

Summary

本手稿详细介绍了如何从小鼠大脑中分离海马动脉和毛细血管,以及如何为压力的焦疗、免疫荧光、生物化学和分子研究加压它们。

Abstract

从微妙的行为改变到晚期痴呆症,血管认知障碍通常在脑缺血后发展。中风和心脏骤停是显性畸形疾病,都诱发脑缺血。然而,在理解血管认知障碍,然后开发性别特异性治疗方面的进展,在功能研究中受到研究小鼠模型大脑微循环的挑战部分限制。在这里,我们提出一种方法,以检查毛细管到动脉信号在从小鼠大脑体海马毛细管毛细管动脉(HiCaPA)制备。我们描述了如何分离、增射和加压微循环,以测量动脉直径以响应毛细管刺激。我们展示了哪些适当的功能控制可用于验证HiCaPA制备的完整性,并显示典型结果,包括测试钾作为神经血管耦合剂和最近具有特征的抑制剂Kir2内矫正钾通道系列,ML133的效果。此外,我们比较了从雄性小鼠和雌性小鼠获得制剂的反应。虽然这些数据反映了功能调查,但我们的方法也可用于分子生物学、免疫化学和电生理学研究。

Introduction

大脑表面的皮环流一直是许多研究的对象,部分原因是它的实验可及性。然而,脑血管的拓扑结构创造了不同的区域。与富含麻醉剂的强健的皮球网络相比,脑内腹腔动脉(PAs)存在有限的辅助供应,每个细胞都渗透神经组织1、2的离散体积。这造成了对血流的瓶颈效应,结合独特的生理特征3,4,5,6,7,8,使脑动脉成为脑血流(CBF)调节9,10的关键部位。尽管PA的隔离和分离技术挑战固有的,但在过去十年中,使用加压容器11、12、13、14、15、16、17的体外功能研究的兴趣日益浓厚。引起这种兴趣增加的原因之一是,对神经血管耦合(NVC)进行了大量研究,这种机制支撑着大脑功能性高血症18。

区域方面,CBF在局部神经激活19后可迅速增加。控制NVC的蜂窝机制和信令特性尚未完全了解。然而,我们在NVC期间发现了一个以前未预料到的脑毛细血管作用,在感知神经活动并将其转化为超极化电信信号以稀释上游动脉20、21、22。作用电位23、24和大导导 Ca2+激活 K+ (BK) 通道在星形端脚25、26上增加间隙钾电浓度 [K]o,导致在毛细血管内膜中激活强的内整整流器 K+ (Kir) 通道。此通道由外部 K+激活,但也由超极化本身激活。通过间隙结扩散,超极化电流然后在相邻的毛细管内皮细胞中再生,并持续到动脉,导致肌细胞放松和CBF增加20,21。对该机制的研究导致我们开发出一种加压毛细管-皮伦皮毛毛(CaPA)制剂,以测量血管刺激期间用血管活性剂的动脉直径。CaPA 制剂由可口的脑内动脉段组成,具有完好的下游毛细管冲压。毛细管末端被微移液器压缩在室玻璃底部,从而遮挡并稳定整个血管形成20,21。

我们之前通过成像CaPA制剂从小鼠皮层20,21和动脉从大鼠杏仁核13和海马16,17进行仪器创新。由于海马血管因其对病理条件的易感性而受到更多的关注,因此,我们在此提供了一种从小鼠海马场(HiCaPA)制备CaPA的分步方法,该方法不仅可用于功能性NVC研究,还可用于分子生物学、免疫化学和电生理学。

Protocol

所有实验均获得科罗拉多大学安舒茨医学院机构动物护理和使用委员会(IACUC)的批准,并根据国家卫生研究院的指南进行。 1. 解决方案 使用MOPS缓冲盐水进行解剖,并在样品使用前保持4°C。不要为溶液加气。制备具有以下成分的 MOPS 缓冲盐水: 135 mM NaCl, 5 mM KCl, 1 mM KH2PO4, 1 mM MgSO4, 2.5 mM CaCl2,5 mM 葡萄糖, 3 mM MOPS, 0.02 mM EDTA, 2…

Representative Results

内皮小电导 (SK) 和中间导电 (IK) Ca2+- 敏感 K+通道对 PA 的直径产生拖延影响。浴液应用1μM NS309,一种合成IK和SK通道激动剂,引起接近最大扩张(图2A,B)。然而,毛细管内皮细胞缺乏IK和SK通道,没有超极化响应NS30920。因此,通过焦压喷射(20 s,5 psi)以1μM NS309刺激毛细管结束不会导致上游动脉?…

Discussion

本手稿中描述的加压 HiCaPA(海马毛细血管-皮毛动脉)制备是我们隔离、加压和研究眼皮动脉29的既定程序的延伸。我们最近报告说,脑毛细管内皮细胞中的Kir2.1通道感觉增加[K]o与神经激活相关,并产生一个上升的超极化信号,以向上动脉20。通过从皮质微循环20、21开发CaPA制剂,部分地揭示了毛细血?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者们感谢朱尔斯·莫林对手稿的有见地的评论。这项研究由CADASIL共同有希望的非营利组织、妇女健康与研究中心和NHLBI R01HL136636(FD)的奖项资助。

Materials

0.22µm Syringe Filters CELLTREAT Scientific Products 229751
12-0 Nylon (12cm) Black Microsurgery Instruments, Inc S12-0 NYLON
Automatic Temperature Controller Warner Instruments TC-324B
Borosilicate Glass O.D.: 1.2 mm, I.D.: 0.68 mm Sutter Instruments B120-69-10
Bovine serum albumin Sigma-Aldrich A7030
CaCl2 dihydrate Sigma-Aldrich C3881
D-(+)-Glucose Sigma-Aldrich G5767
Dissection Scope Olympus SZ11
ECOLINE VC-MS/CA 4-12 — complete Pump with Drive and MS/CA 4-12 pump-head Ismatec ISM 1090
EGTA Sigma-Aldrich E4378
Fine Scissors – Sharp Fine Science Tools 14063-09
Inline Water Heater Warner Instruments SH-27B
Integra™ Miltex™Tissue Forceps Fisher Scientific 12-460-117
KCl Sigma-Aldrich P9333
KH2PO4 Sigma-Aldrich P5379
Magnesium sulfate heptahydrate Sigma-Aldrich M1880
MgCl Anhydrous Sigma-Aldrich M8266
Micromanipulator Narishige MN-153
ML 133 hydrochloride Tocris 4549
MOPS Sigma-Aldrich M1254
NaCl Sigma-Aldrich S9625
NaH2PO4 Sigma-Aldrich S9638
NaHCO3 Sigma-Aldrich S8875
NS309 Tocris 3895
Picospritzer III – Intracellular Microinjection Dispense Systems, 2-channel Parker Hannifin 052-0500-900
Pressure Servo Controller with Peristaltic Pump Living Systems Instrumentation PS-200
Sodium pyruvate Sigma-Aldrich P3662
Super Fine Forceps Fine Science Tools 11252-20
Surgical Scissors – Sharp-Blunt Fine Science Tools 14001-13
Vertical Micropipette Puller Narishige PP-83

Referências

  1. Nishimura, N., Schaffer, C. B., Friedman, B., Lyden, P. D., Kleinfeld, D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America. 104 (1), 365-370 (2007).
  2. Shih, A. Y., et al. Robust and fragile aspects of cortical blood flow in relation to the underlying angioarchitecture. Microcirculation (New York, N.Y.:1994). 22 (3), 204-218 (2015).
  3. Cipolla, M. J., Smith, J., Kohlmeyer, M. M., Godfrey, J. A. SKCa and IKCa Channels, Myogenic Tone, and Vasodilator Responses in Middle Cerebral Arteries and Parenchymal Arterioles: Effect of Ischemia and Reperfusion. Stroke. 40 (4), 1451-1457 (2009).
  4. Nystoriak, M. A., et al. Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. AJP: Heart and Circulatory Physiology. 300 (3), H803-H812 (2011).
  5. Dabertrand, F., Nelson, M. T., Brayden, J. E. Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels. Circulation Research. 110 (2), 285-294 (2012).
  6. Dabertrand, F., Nelson, M. T., Brayden, J. E. Ryanodine receptors, calcium signaling, and regulation of vascular tone in the cerebral parenchymal microcirculation. Microcirculation (New York, N.Y.:1994). 20 (4), 307-316 (2013).
  7. Cipolla, M. J., et al. Increased pressure-induced tone in rat parenchymal arterioles vs. middle cerebral arteries: role of ion channels and calcium sensitivity. Journal of Applied Physiology. 117 (1), 53-59 (2014).
  8. De Silva, T. M., Modrick, M. L., Dabertrand, F., Faraci, F. M. Changes in Cerebral Arteries and Parenchymal Arterioles with Aging: Role of Rho Kinase 2 and Impact of Genetic Background. Hypertension. 71 (5), 921-927 (2018).
  9. Shih, A. Y., et al. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nature Neuroscience. 16 (1), 55-63 (2013).
  10. Koide, M., et al. The yin and yang of KV channels in cerebral small vessel pathologies. Microcirculation (New York, N.Y.:1994). 25 (1), (2018).
  11. Girouard, H., et al. Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proceedings of the National Academy of Sciences of the United States of America. 107 (8), 3811-3816 (2010).
  12. Dabertrand, F., et al. Prostaglandin E2, a postulated astrocyte-derived neurovascular coupling agent, constricts rather than dilates parenchymal arterioles. Journal of Cerebral Blood Flow & Metabolism. 33 (4), 479-482 (2013).
  13. Longden, T. A., Dabertrand, F., Hill-Eubanks, D. C., Hammack, S. E., Nelson, M. T. Stress-induced glucocorticoid signaling remodels neurovascular coupling through impairment of cerebrovascular inwardly rectifying K+ channel function. Proceedings of the National Academy of Sciences of the United States of America. 111 (20), 7462-7467 (2014).
  14. Dabertrand, F., et al. Potassium channelopathy-like defect underlies early-stage cerebrovascular dysfunction in a genetic model of small vessel disease. Proceedings of the National Academy of Sciences of the United States of America. 112 (7), E796-E805 (2015).
  15. Pires, P. W., Sullivan, M. N., Pritchard, H. A. T., Robinson, J. J., Earley, S. Unitary TRPV3 channel Ca2+ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles. AJP: Heart and Circulatory Physiology. 309 (12), H2031-H2041 (2015).
  16. Johnson, A. C., Cipolla, M. J. Altered hippocampal arteriole structure and function in a rat model of preeclampsia: Potential role in impaired seizure-induced hyperemia. Journal of Cerebral Blood Flow & Metabolism. 37 (8), 2857-2869 (2016).
  17. Johnson, A. C., Miller, J. E., Cipolla, M. J. Memory impairment in spontaneously hypertensive rats is associated with hippocampal hypoperfusion and hippocampal vascular dysfunction. Journal of Cerebral Blood Flow & Metabolism. , (2019).
  18. Iadecola, C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 96 (1), 17-42 (2017).
  19. Roy, C. S., Sherrington, C. S. On the Regulation of the Blood-supply of the Brain. The Journal of Physiology. 11 (1-2), 85-158 (1890).
  20. Longden, T. A., et al. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nature Neuroscience. 20 (5), 717-726 (2017).
  21. Harraz, O. F., Longden, T. A., Dabertrand, F., Hill-Eubanks, D., Nelson, M. T. Endothelial GqPCR activity controls capillary electrical signaling and brain blood flow through PIP2 depletion. Proceedings of the National Academy of Sciences of the United States of America. 115 (15), E3569-E3577 (2018).
  22. Harraz, O. F., Longden, T. A., Hill-Eubanks, D., Nelson, M. T. PIP2 depletion promotes TRPV4 channel activity in mouse brain capillary endothelial cells. eLife. 7, 351 (2018).
  23. Hodgkin, A. L., Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology. 117 (4), 500-544 (1952).
  24. Ballanyi, K., Doutheil, J., Brockhaus, J. Membrane potentials and microenvironment of rat dorsal vagal cells in vitro during energy depletion. The Journal of Physiology. 495 (Pt 3), 769-784 (1996).
  25. Filosa, J. A., et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nature Neuroscience. 9 (11), 1397-1403 (2006).
  26. Attwell, D., et al. Glial and neuronal control of brain blood flow. Nature. 468 (7321), 232-243 (2010).
  27. Coyle, P. Vascular patterns of the rat hippocampal formation. Experimental Neurology. 52 (3), 447-458 (1976).
  28. Wang, H. R., et al. Selective inhibition of the K(ir)2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR, and pharmacological characterization of ML133. ACS Chemical Biology. 6 (8), 845-856 (2011).
  29. Pires, P. W., Dabertrand, F., Earley, S. Isolation and Cannulation of Cerebral Parenchymal Arterioles. Journal of Visualized Experiments. (111), 1-11 (2016).
  30. Bayliss, W. M. On the local reactions of the arterial wall to changes of internal pressure. The Journal of Physiology. 28 (3), 220-231 (1902).
  31. Montagne, A., et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 85 (2), 296-302 (2015).
  32. Zhang, X., et al. Circulating heparin oligosaccharides rapidly target the hippocampus in sepsis, potentially impacting cognitive functions. Proceedings of the National Academy of Sciences of the United States of America. 116 (19), 9208-9213 (2019).
  33. Kim, K. J., Filosa, J. A. Advanced in vitro approach to study neurovascular coupling mechanisms in the brain microcirculation. The Journal of Physiology. 590 (7), 1757-1770 (2012).
check_url/pt/60676?article_type=t

Play Video

Citar este artigo
Rosehart, A. C., Johnson, A. C., Dabertrand, F. Ex Vivo Pressurized Hippocampal Capillary-Parenchymal Arteriole Preparation for Functional Study. J. Vis. Exp. (154), e60676, doi:10.3791/60676 (2019).

View Video