Summary

完全加工重组KRAS4b:分离和描述脱脂和甲基化蛋白

Published: January 16, 2020
doi:

Summary

前膜化是外周膜结合蛋白的重要修饰。昆虫细胞可以纵产生脱脂和甲苯甲酸化 KRAS4b 的数量,使生物物理测量蛋白质 – 蛋白质和蛋白质 – 脂质相互作用

Abstract

蛋白质前化是一种关键的修饰,负责将蛋白质定向到细胞内膜上。KRAS4b在22%的人类癌症中发生变异,由于C-总站存在”CAAX”箱形图案,KRAS4b通过脱氧核化和甲酸甲基化进行处理。一个工程的巴库病毒系统用于在昆虫细胞中表达脱脂和甲苯甲酸KRAS4b,并曾对此进行过描述。在这里,我们描述了蛋白质的详细,实用的纯化和生化表征。具体来说,亲和和电子交换色谱法用于纯化蛋白质,使蛋白质均匀化。使用正原质谱法验证KRAS4b的正确修改,并验证核苷酸结合。最后,利用表面质子共振光谱法,测定了脱氧核酸和甲苯甲酸化KRAS4b与脂质体之间的膜结。

Introduction

翻译后修饰在定义蛋白质的功能活性方面起着关键作用。磷酸化和糖基化等修改已经确立。然而,脂质修饰的特征较差。据估计,多达0.5%的细胞蛋白可能是1。前化是转移15碳法内西或20碳的Geranyl高脂链到含有CAAX图案2的接受蛋白。早发蛋白与多种人类疾病的进展有关,包括早衰3、阿尔茨海默氏症4、心脏功能障碍5、胆汁血症6和癌症7。小型GTPases、HRAS、NRAS和KRAS1、核层压宁和运动性CENP-E和F在基础条件下是远血化蛋白。其他小型GTPases,即RhoA,RhoC,Rac1,cdc-42和RRAS是Geranylranylate8,而RhoB可以是远发或杰兰格尔尼酸盐9。

小型GTPase KRAS4b功能作为分子开关,基本上通过多种蛋白质-蛋白质相互作用将细胞外生长因子信号传送到细胞内信号转导通路,刺激细胞生长和增殖。KRAS4b 生物化学有两个关键方面对其活性至关重要。首先,蛋白质在非活性GDP和活性GTP约束状态之间循环,从而主动与效应者互动。其次,C端多流氨酸区域和脱脂和甲苯甲基化半胱氨酸将蛋白质定向到血浆膜,使下游效应器得以招募和激活。突变KRAS4b是胰腺癌、结肠直肠癌和肺癌10的致癌驱动因素,因此,治疗干预将具有巨大的临床效益。生产真正改性重组蛋白,即脱脂和甲苯甲基化,可利用KRAS4b与脂质体或脂质纳米片等膜代用品进行生化筛选

法内西尔转移酶 (FNT) 催化在 KRAS4b 的 CAAX 主题中向 C 端半胱氨酸中添加法尼西尔焦磷酸酯。前化后,蛋白质被贩运到内质神经质 (ER),其中 Ras 转换酶 (RCE1) 会裂解三个 C 端残留物。加工的最后一步是通过ER膜蛋白,异丙烯酰乙基甲基转移酶(ICMT)对新的C端法内西锡化残留物进行甲基化。大肠杆菌中重组KRAS4b的表达导致未修饰蛋白的产生。以前生产加工的KRAS4b的尝试一直受到限制,因为没有足够的产量的结构或药物筛选实验或未能重述本地全长成熟蛋白13,14。这里提出的协议采用基于毒细胞的工程性昆虫细胞表达系统和纯化方法,在5mg/L细胞培养的培养下产生高度纯化、完全加工的KRAS4b。

在开始结构生物学或药物筛选研究之前,仔细的蛋白质表征对于验证重组蛋白的质量至关重要。完全加工的KRAS4b的两个关键参数是验证正确的前阴修饰和可及的法奈酸和卡博甲基化C-总站(FMe)与膜替代品或脂质相互作用。KRAS4b-FMe的电喷雾电离质谱法(ESI-MS)用于测量分子量,并确认存在法内西尔和甲苯甲基修饰。原生质谱法,其中样品喷洒非脱模溶剂,用于证明KRAS4b-FMe也绑定到其国内生产总值的系数。最后,利用表面质子共振光谱测量KRAS4b-FMe与固定脂质体的直接结合。

Protocol

1. 蛋白质纯化 准备缓冲区 A_H,如表1所示。 缓冲液 缓冲剂(所有 20 mM) pH 纳克莱 (mM) 伊米达索 (mM) MgCl2 TCEP</…

Representative Results

该协议中最大的变量之一是表达靶蛋白(His6-MBP-tev-KRAS4b)的量。该协议是利用从Trichoplusia ni细胞系Tni-FNL17分离物开发的,该基体适应悬浮生长,并从血清中分离。鉴于使用巴库病毒表达系统在各种昆虫细胞系报告的各种结果范围广泛,建议使用Tni-FNL,至少在最初用于生产KRAS4b-FMe。 迁移到 +65 kDa 的深色蛋白质在澄清的解液和洗脱分数中应明显(<strong …

Discussion

如”代表性结果”部分所述,在纯化过程中最关键的步骤是在样品处于低盐时处理。限制样品暴露于小于 200 mM NaCl 的时间将有助于减少降水并提高样品产量。如果配置文件不符合预期,则很难解释 CEX 的结果(参见图 2)。在协议成为常规之前,建议未向前推进的CEX洗脱分数在-80°C处储存,直到完成完整的质量分析,以确保将适当的材料向前推进。除了上述CEX步骤的参数外,该…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢卡里萨·格罗斯、詹·梅尔哈尔科和马特·德鲁在弗雷德里克国家癌症研究实验室的蛋白质表达实验室的克隆和表达支持。该项目已全部或部分由国家癌症研究所、国家卫生研究院的联邦资金供资,合同号为No.HHSN261200800001E。本出版物的内容不一定反映卫生与公众服务部的观点或政策,也不提及商号、商业产品或组织,也不表示美国政府认可

Materials

1.8 mL Safe-Lock Tubes, Natural Eppendorf 22363204
11 mm Cl SS Interlocked Insert Autosampler Vials Thermo Scientific 30211SS-1232
1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) AVANTI POLAR LIPIDS 850457 purchase as liquid stocks in chloroform
1-palmitoyl-2-oleoyl-glycero-3-phospho-L-serine (POPS) AVANTI POLAR LIPIDS 840034 purchase as liquid stocks in chloroform
5427R Centrifuge Eppendorf
Acetonitrile, HPLC Grade Fisher Chemical A998-1 1L
Ammonium Acetate Sigma-Aldrich 09689-250g
Argon gas Airgas ARUP
Assay Plate 384 CORNING 3544
Biacore T200 Instrument GE Healthcare
Blue Snap-It Seals, T/S Thermo Scientific C4011-54B
Branson Ultrasonic Bath Thermo Fisher 15-336-1000
Cation Exchange Chromatography (CEX) column GE Healthcare Life Sciences 29018183 HiPrep SP Sepharose High Performance
CHAPS Sigma C3023
Dyna Pro Plate Reader Wyatt Technologies
Exactive Plus EMR Mass Spectrometer Thermo Scientific
Formic Acid Sigma-Aldrich F0507-500Ml Use Reagent Grade or better
Gilson vials 7×14 mm Tubes GE Healthcare BR-1002-12
Glass screw thread vials with PTFE foam liners Scientific Specialities B69302
High speed/benchtop centrifuge Thermo Fischer Scientific 05-112-114D capable of up to 4,000 xg
His6-Tobacco Etch Virus (TEV) protease Addgene 92414 Purified as per Raran-Kurussi et al. (2017) Removal of Affinity Tags with TEV Protease. In: Burgess-Brown N. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 1586. Humana Press, New York, NY
Immobilized Metal Affinity Chromatography (IMAC) column GE Healthcare Life Sciences 28-9365-51 HisPrep FF 16/10
In-House Water Supply, Arium Advance Sartorius Stedim Resistivity of 18 MΩ0-cm
Lipid extruder set with holder AVANTI POLAR LIPIDS 610023
Liquid nitrogen Airgas NI-DEWAR
M110-EH microfluidizer Microfluidics
MabPac RP UHPLC Column, 4 um, 3.0 x 50 mm Thermo Scientific 088645
MabPac SEC-1 Column, 5 um, 300 Å, 2.1 x 150 mm Thermo Scientific 088790
MagTran software Thermo Scientific
Methanol, HPLC Grade VWR Chemicals BDH20864.400
NGC Chromatography System BioRad 78880002 NGC QuestTM 100 Chromatography system
Protease Inhibitor Cocktail without EDTA or other chelators Millipore Sigma P8849
Rubber Caps type 3 GE Healthcare BR-1005-02
Series S Sensor Chip L1 GE Healthcare 29104993
Spectrophotometer Thermo Fischer Scientific 13-400-519 Absorbace at 280nm
Ultra-15 Centrifugal Filter Units, 10K NMWL Millipore Sigma UFC901008 PES membrane
Ultracel 10K MWCO Ultra 0.5 mL Centrifuge Filters Amicon UFC501024
Ultracentrifuge Beckman Coulter Optima – L80K capable of 100,000 xg
Vanquish UHPLC (Pump, Column Hearter, and LC System) Thermo Scientific
Vortex Genie 2 Fisher 12-812
Water, HPLC Grade Sigma-Aldrich 270733-1L May use in-house water source (see below)
Whatman GD/XP PES 0.45 mm syringe filter GE Healthcare – Whatman 6994-2504
Xcalibur QualBrowser Thermo Scientific proteomics software

Referências

  1. Cox, A. D., Der, C. J. Protein prenylation: more than just glue. Current Opinion in Cell Biology. 4 (6), 1008-1016 (1992).
  2. Zhang, F. L., Casey, P. J. Protein Prenylation: Molecular Mechanisms and Functional Consequences. Annual Review of Biochemistry. 65, 241-269 (1996).
  3. Hottman, D. A., Li, L. Protein prenylation and synaptic plasticity: implications for Alzheimer’s disease. Molecular Neurobiology. 50 (1), 177-185 (2014).
  4. Hottman, D. A., Chernick, D., Cheng, S., Wang, Z., Li, L. HDL and cognition in neurodegenerative disorders. Neurobiology of Disease. 72, 22-36 (2014).
  5. Nakagami, H., Jensen, K. S., Liao, J. K. A novel pleiotropic effect of statins: prevention of cardiac hypertrophy by cholesterol-independent mechanisms. Annals of Medicine. 35 (6), 398-403 (2003).
  6. Kohnke, M., et al. Rab GTPase prenylation hierarchy and its potential role in choroideremia disease. PLoS One. 8 (12), 81758 (2013).
  7. Berndt, N., Hamilton, A. D., Sebti, S. M. Targeting protein prenylation for cancer therapy. Nature Reviews Cancer. 11 (11), 775-791 (2011).
  8. Kho, Y., et al. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proceedings of the National Academy of Sciences of the United States of America. 101 (34), 12479-12484 (2004).
  9. Armstrong, S. A., Hannah, V. C., Goldstein, J. L., Brown, M. S. CAAX geranylgeranyl transferase transfers farnesyl as efficiently as geranylgeranyl to RhoB. Journal of Biological Chemistry. 270 (14), 7864-7868 (1995).
  10. Stephen, A. G., Esposito, D., Bagni, R. K., McCormick, F. Dragging ras back in the ring. Cancer Cell. 25 (3), 272-281 (2014).
  11. Denisov, I. G., Sligar, S. G. Nanodiscs in Membrane Biochemistry and Biophysics. Chemical Reviews. 117 (6), 4669-4713 (2017).
  12. Bao, H., Duong, F., Chan, C. S. A Step-by-step Method for the Reconstitution of an ABC Transporter into Nanodisc Lipid Particles. Journal of Visualized Experiments. (66), e3910 (2012).
  13. Dementiev, A. K-Ras4B lipoprotein synthesis: biochemical characterization, functional properties, and dimer formation. Protein Expression and Purification. 84 (1), 86-93 (2012).
  14. Lowe, P. N., et al. Characterization of recombinant human Kirsten-ras (4B) p21 produced at high levels in Escherichia coli and insect baculovirus expression systems. Journal of Biological Chemistry. 266 (3), 1672-1678 (1991).
  15. Gillette, W., et al. Production of Farnesylated and Methylated Proteins in an Engineered Insect Cell System. Methods in Molecular Biology. 2009, 259-277 (2019).
  16. Agamasu, C., et al. KRAS Prenylation Is Required for Bivalent Binding with Calmodulin in a Nucleotide-Independent Manner. Biophysical Journal. 116 (6), 1049-1063 (2019).
  17. Talsania, K., et al. Genome Assembly and Annotation of the Trichoplusia ni Tni-FNL Insect Cell Line Enabled by Long-Read Technologies. Genes. 10 (2), 79 (2019).
  18. Spencer-Smith, R., et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nature Chemical Biology. 13 (1), 62-68 (2016).
  19. Lowe, P. N., et al. Expression of polyisoprenylated Ras proteins in the insect/baculovirus system. Biochemical Society Transactions. 20 (2), 484-487 (1992).
  20. Dharmaiaha, S., et al. Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ. Proceedings of the National Academy of Sciences of the United States of America. 113 (44), 6766-6775 (2016).
  21. Abdiche, Y. N., Myszka, D. G. Probing the mechanism of drug/Lipid membrane interactions using Biacore. Analytical Biochemistry. 328 (2), 233-243 (2004).
  22. Fisher, R. J., et al. Complex interactions of HIV-1 nucleocapsid protein with oligonucleotides. Nucleic Acids Research. 34 (2), 472-484 (2006).
  23. Lakshman, B., et al. Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane. Journal of Biological Chemistry. 294, 2193-2207 (2019).
check_url/pt/60703?article_type=t

Play Video

Citar este artigo
Agamasu, C., Frank, P., Perkins, S., Waybright, T., Messing, S., Gillette, W., Stephen, A. G. Fully Processed Recombinant KRAS4b: Isolating and Characterizing the Farnesylated and Methylated Protein. J. Vis. Exp. (155), e60703, doi:10.3791/60703 (2020).

View Video