Summary

用骨肉瘤衍生细胞外囊泡处理的美相干细胞中的LINE-1甲基化分析

Published: February 01, 2020
doi:

Summary

这里描述的是使用甲基化特异性探针扩增方法分析使用骨肉瘤衍生的细胞外囊泡治疗的中位体干细胞中LINE-1元素的甲基化水平。也演示了超中心化,一种从胎儿牛血清中分离细胞外囊泡的常用程序。

Abstract

甲基化特异性探针扩增(MSPA)是一种简单而可靠的技术,可用于检测DNA样本甲基化水平的相对差异。它是足智多谋的,需要少量的DNA,需要大约4~5小时的动手工作。在所提出的技术中,DNA样本首先变性,然后杂交为以甲基化或参考位点的DNA为目标作为对照的探针。杂交DNA被分离成平行反应,一个只进行结扎,另一个进行结扎,随后在未甲基化GCGC序列下HhaI介导消化。由此产生的DNA片段被PCR扩增,并通过毛细血管电泳分离。HhaI 不消化甲基化 GCGC 位点并产生峰值信号,而未甲基化 GCGC 位点被消化,不生成峰值信号。比较每个样本的消化和未消化版本的控制-归一化峰可提供DNA样本的甲基化剂量比。在这里,MSPA用于检测骨肉瘤衍生的细胞外囊泡(EV)对间质干细胞中长穿插核元素1(LINE-1)甲基化状态的影响。LINE-1是重复性DNA元素,通常在癌症中进行低甲基化,以这种能力,可以作为生物标志物。超离心也被用作从生物液体中分离细胞外囊泡的具有成本效益的方法(即,在制备EV耗尽的胎儿牛血清[FBS]和从骨肉瘤调节介质中分离EV[差分离离]时)。对于甲基化分析,定制LINE-1探针设计用于针对LINE-1启动器序列中的三个甲基化位点和七个控制位点。该协议演示了使用MSPA进行LINE-1甲基化分析,并描述了通过超离心制备EV-耗尽FBS。

Introduction

DNA甲基化是发生在人类细胞中的一种主要的表观遗传修饰。脱氧核糖核酸甲基化是指甲基组与CpG二核苷酸中细胞氨酸残留物的联系。这种核苷酸通常存在于基因1的5’区域的簇(CpG岛)中。在正常细胞中,大多数的二核苷酸处于非甲基化状态,这允许DNA转录。顺便说一句,许多癌症都与高甲基化CpG岛和转录组沉默2有关,特别是在肿瘤抑制基因中,这反过来又促成了癌症3的各种特征。

另一方面,长穿插的核元素1(LINE-1s或L1s)是重复的、可转位DNA元素,在CpG岛屿通常具有高水平的甲基化。LINE-1的甲基化可防止易位,有助于维持基因组的完整性。在几种类型的癌症中,LINE-1被甲基化,导致活化和随后逆转介导染色体不稳定4。LINE-1占人类基因组5的近17%,其甲基化状态可作为全球基因组甲基化水平6的指标。全球LINE-1低甲基化被认为是在细胞过渡到肿瘤表型7之前;因此,它有望成为早期癌症发病的潜在标志物。

目前,甲基化分析有几种方法,包括热测序、甲基化特异性PCR、微阵列和染色质免疫沉淀1。下一代测序的使用也使得有可能纳入全基因组的DNA甲基化检测方法。这些方法中有许多依赖于双硫酸盐处理的DNA,其中未甲基化的细胞氨酸转化为尿素,甲基化的细胞氨酸保持不变。然而,使用双硫酸盐处理的DNA有几个陷阱,如未甲基化的细胞氨酸不完全转化为尿素,有偏颇的序列扩增,和测序错误8。

在甲基化特异性探针扩增(MSPA)中,由两个寡核苷酸靶向DNA序列的探针靶向DNA序列,该DNA序列含有甲基化敏感限制性酶HhaI9的限制性位点(GCGC)。探针杂交为DNA后,每个样本被分成两组。第一组中的探针进行结扎,而第二组中的探针进行结扎,随后在未甲基化CGCG位点进行HhaI介导消化。两组样品然后由PCR放大,产品通过毛细血管电泳分离。未甲基化位点的探针由HhaI消化,在PCR期间不放大,因此没有峰值信号。相比之下,甲基化位点的探针受到保护,防止消化,因此在PCR期间被放大,随后产生峰值信号10。

与替代方法不同,MSPA 具有几个优点。首先,它需要少量的DNA(50-100 ng),非常适合分析从正式固定石蜡嵌入样品10的DNA。它不需要双硫酸盐处理的DNA;事实上,它不适合以这种方式修饰的DNA。可以同时分析许多样品,并设计MSPA探针,以便它们同时针对多个基因或序列。此外,探针是特定和敏感的甲基化DNA,因为HhaI限制位点对应于一个典型的CpG岛屿10序列。

本研究调查了骨肉瘤(OS)衍生的细胞外囊泡(EV)对脂肪组织衍生的中质性干细胞(AT-MSCs;图 1.EV 是纳米级、膜结合的囊泡,由大多数细胞类型分泌。它们携带蛋白质、脂质、mRNA、微RNA和来自母细胞11、12的其他分子。EV调解细胞间通信,并在几种病理生理条件下发挥重要作用13,14。最近的一项研究显示,癌症衍生的EV可能将活性LINE-1转移到受体细胞15。此前有报道称,除了其他遗传效应16外,来自HOS-143B细胞系的EV可以改变MSCs中LINE-1的甲基化状态。

当为EV分离而生长细胞时,在生长培养基中使用EV耗尽的胎儿牛血清[FBS]很重要,因为FBS衍生的EV可能会干扰来自其他来源的EV,并妨碍结果17,18。超中心化是消耗 FBS EV 的最常见方法之一。与超滤和商业EV耗尽FBS19等替代品相比,这是一个相对简单和具有成本效益的程序。在这里,该协议还演示了如何通过超离心来制备EV耗尽的FBS。

本文为上述技术提供了详细的协议,从从OS细胞系分离EV到在OSEV处理MSC中的LINE-1甲基化分析(图1)。

Protocol

这项研究得到了赫尔辛基和乌西马医院区道德委员会的批准(道德批准D.217/13/03/02/2015)。 1. 通过超离心制备EV耗尽FBS 将 FBS 放入(超)离心管中,并将其放入超离心桶中。为确保超离心平稳、安全地运行,将水桶彼此平衡在 10 mg 以内。 在摆动转子上装载铲斗(SW28 型,k 因子 246)。将转子置于超离心机中,在 4°C 下以 100,000 x g运行 19 小时。 小…

Representative Results

本研究的主要目的是评估OS-EV对MSCs的表观遗传效应。使用标准差分离离法从HOS-143B细胞中分离出OS-EV。典型的EV标记CD63,Hsp70和TSG101的西方印迹的表达证实了OS-EV的存在。(图2A)没有钙毒素信号表明OS-EV隔离物的纯度。使用 TEM 观察到了纯度的其他指示,存在各种尺寸的完整囊泡(图 2B)。OS-EV粒子平均浓度为7.63×1011/mL(…

Discussion

这项研究说明了如何使用MSPA检测和量化特定遗传元素的甲基化状态。LINE-1是这里的焦点,但探测器可以设计为针对一系列基因和序列。此外,可用于不同应用的探头混合物越来越多。MSPA是一种简单而可靠的DNA甲基化分析技术,不需要双硫酸盐转化10。从样品制备到数据分析的完整过程大约需要 2 天,但仅涉及 4~5 小时的实际动手工作。它适用于少量的DNA(低至70 ng),如此处所?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作由赫尔辛基大学项目资助(WBS490302,WBS73714112)赫尔辛基大学医院国家资助大学一级健康研究(Y1014SUL05,TYH2016130),芬兰-挪威医学基金会和塞尔玛和马亚-丽莎·塞兰德基金(米内尔瓦基金会)。我们感谢瓦尔特·帕维奇提供经过修改的 MSPA 协议和相关技术支持。我们感谢特穆·马萨林(赫尔辛基大学)帮助我们制作视频。

Materials

1 mL syringe Terumo SS+01T1 for NTA
24-well plate Corning 3524 MSC cell culture
3730xl DNA Analyzer Applied Biosystems, ThermoFisher Scientific 3730XL
50 mL centrifuge tube Corning 430829
Beckman Optima LE-80K Ultracentrifuge Beckman
BlueStar Prestained Protein Marker Nippon Genetics MWP03 WB: protein marker
Calnexin (clone C5C9) Cell Signaling Technology 2679 WB, dilution 1:800
CD63 (clone H5C6) BD Biosciences 556019 WB, dilution 1:1000
Centrifuge 5702 R Eppendorf 5703000010 For conditioned media and cells
Centrifuge 5810 Eppendorf 5810000010 For spinning down 96-well plate
Centrifuge tube (polyallomer, 14×95 mm) Beckman 331374 Ultracentrifugation
DMEM/F-12 + GlutaMAX medium Gibco, Life Technologies 31331-028 For AT-MSC culture
Fetal bovine serum Gibco, Life Technologies 10270-106
GeneScan 500 LIZ size standard Applied Biosystems, Life Technologies 4322682 for capillary electrophoresis
GenomePlex Complete Whole Genome Amplification (WGA) Kit Sigma WGA2-10RXN for MSPA negative control
Hi-Di formamide Applied Biosystems, Life Technologies 4311320 for capillary electrophoresis
HOS-143B cell line ATCC CRL-8303
Hsp70 (clone 5G10) BD Biosciences 554243 WB, dilution 1:1000
IRDye 800CW Goat anti-mouse Li-Cor 926-32210 WB: secondary
IRDye 800CW Goat anti-rabbit Li-Cor 926-32211 WB: secondary
LINE-1 probe-mix primers IDT Sequences in Table 1
MicroAmp Optical 96-well reaction plate with barcode Applied Biosystems, Life Technologies 4306737 also requires sealing film
Micro BCA Protein Assay kit ThermoFisher Scientific 23235 measure protein concentration
MiniProtean TGX 10% gels Bio-Rad 456-1034 WB: gel electrophoresis
NanoSight LM14C Malvern Instruments for NTA
Nitrocellulose membrane 0.2 µm Bio-Rad 1620112 WB: protein transfer
NucleoSpin Tissue XS Macherey-Nagel 740901.50 for DNA extraction
Odyssey Blocking Buffer Li-Cor 927-40000 WB: blocking, antibodies
PBS, 1X Corning 21-040-CVR
Penicillin-streptomycin Gibco, Life Technologies DE17-602E Antibiotics for culture media
Protein LoBind tube, 0.5 mL Eppendorf 22431064 For storing Evs
REVERT Total Protein Stain and Wash Solution Kit Li-Cor 926-11015 WB: total protein staining
RKO cell line ATCC CRL-2577 for MSPA positive control
RPMI medium 1640 + GlutaMAX Gibco, Life Technologies 61870-010 For HOS-143B cell culture
SALSA MLPA HhaI enzyme MRC-Holland SMR50
SALSA MLPA reagent kit MRC-Holland EK1-FAM
SALSA MLPA P300 probe-mix MRC-Holland P300-100R
Swinging rotor SW-28 Beckman Coulter 342207 Ultracentrifugation
Syringe filter, 0.22 µm Jet Biofil FPE-204-030 sterile filtering FBS
Tecnai 12 FEI Company equipped with Gatan Orius SC
1000B CCD-camera
(Gatan Inc., USA); for TEM
TBS, 1X tablets Medicago 09-7500-100 WB: buffer
Trans-Blot Turbo Bio-Rad WB: transfer
Thermal cycler ThermoFisher Scientific TCA0096
TrypLE Express Gibco 12604-021 for trypsinization of cells
TSG101 (clone 4A10) Sigma SAB2702167 WB, dilution 1:500

Referências

  1. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature Reviews Genetics. 8, 286-298 (2007).
  2. Herman, J. G., Baylin, S. B. Gene silencing in cancer in association with promoter hypermethylation. New England Journal of Medicine. 349, 2042-2054 (2003).
  3. Hanahan, D., Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell. 144 (5), 646-674 (2011).
  4. Howard, G., Eiges, R., Gaudet, F., Jaenisch, R., Eden, A. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene. 27, 404-408 (2008).
  5. Lander, E. S., et al. Initial sequencing and analysis of the human genome. Nature. 409, 860-921 (2001).
  6. Rodriguez, J., et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Pesquisa do Câncer. 66, 8462 (2006).
  7. Feinberg, A. P., Ohlsson, R., Henikoff, S. The epigenetic progenitor origin of human cancer. Nature Reviews Genetics. 7, 21-33 (2006).
  8. Bock, C., et al. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics. 21 (11), 4067-4068 (2005).
  9. Schouten, J. P., et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Research. 30, 57 (2013).
  10. Nygren, A. O. H., et al. Methylation-Specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Research. 33 (14), 128 (2005).
  11. El Andaloussi, S., Mager, I., Breakefield, X. O., Wood, M. J. Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery. 12, 347-357 (2013).
  12. Vallabhaneni, K. C., et al. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget. 6 (7), 4953-4967 (2015).
  13. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., Ratajczak, M. Z. Membrane- derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 20, 1487-1495 (2006).
  14. Lee, T. H., et al. Microvesicles as mediators of intercellular communication in cancer- the emerging science of cellular “debris”. Seminars in Immunopathology. 33, 455-467 (2011).
  15. Kawamura, Y., Calle, A. S., Yamamoto, Y., Sato, T., Ochiya, T. Extracellular vesicles mediate the horizontal transfer of an active LINE-1 retrotransposon. Journal of Extracellular Vesicles. 8, 1643214 (2019).
  16. Mannerström, B., et al. Epigenetic alterations in mesenchymal stem cells by osteosarcoma-derived extracellular vesicles. Epigenetics. 14 (4), 352-364 (2019).
  17. Shelke, G. V., Lässer, C., Gho, Y. S., Lötvall, J. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. Journal of Extracellular Vesicles. 3, 24783 (2014).
  18. Wei, Z., Batagov, A. O., Carter, D. R., Krichevsky, A. M. Fetal bovine serum RNA interferes with the cell culture derived extracellular RNA. Scientific Reports. 6, 31175 (2016).
  19. Kornilov, R., et al. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. Journal of Extracellular Vesicles. 7, 1422674 (2018).
  20. Théry, C., Amigorena, S., Raposo, G., Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology. 30 (1), 1-29 (2006).
  21. Puhka, M., et al. Metabolomic profiling of extracellular vesicles and alternative normalization methods reveal enriched metabolites and strategies to study prostate cancer-related changes. Theranostics. 7 (16), 3824 (2017).
  22. Peltoniemi, H. H., et al. Stem cell enrichment does not warrant a higher graft survival in lipofilling of the breast: A prospective comparative study. Journal of Plastic, Reconstructive & Aesthetic Surgery. 66 (11), 1494-1503 (2013).
  23. Pavicic, W., Joensuu, E. I., Nieminen, T., Peltomäki, P. LINE-1 hypomethylation in familial and sporadic cancer. Journal of Molecular Medicine. 90, 827-835 (2012).
  24. . L1.2 sequence on GenBank (accession number: AH005269.2) Available from: https://www.ncbi.nlm.nih.gov/nuccore/AH005269 (2000)
  25. Designing synthetic MLPA probes (v04). MRC-Holland Available from: https://support.mlpa.com/downloads/files/designing-synthetic-mlpa-probes (2018)
  26. . Takara Bio Inc Available from: https://www.takarabio.com/us/products/cell_biology_and_epigenetics/epigenetics/dna_preparation/msre_overview (2018)
  27. Pisanic, R., et al. Long interspersed nuclear element 1 retrotransposons become deregulated during the development of ovarian cancer precursor lesions. The American Journal of Pathology. 189 (3), 513-520 (2019).
check_url/pt/60705?article_type=t

Play Video

Citar este artigo
Sinha, S., Mannerström, B., Seppänen-Kaijansinkko, R., Kaur, S. LINE-1 Methylation Analysis in Mesenchymal Stem Cells Treated with Osteosarcoma-Derived Extracellular Vesicles. J. Vis. Exp. (156), e60705, doi:10.3791/60705 (2020).

View Video