Summary

एक रैखिक मिश्रित प्रभाव दृष्टिकोण का उपयोग कर एक व्यक्तिगत पेड़ बेसल क्षेत्र वेतन वृद्धि मॉडल का विकास

Published: July 03, 2020
doi:

Summary

मिश्रित प्रभाव मॉडल वानिकी में एक पदानुक्रमित स्टोचस्टिक संरचना के साथ डेटा का विश्लेषण करने के लिए लचीले और उपयोगी उपकरण हैं और वन विकास मॉडल के प्रदर्शन में काफी सुधार करने के लिए भी उपयोग किया जा सकता है। यहां, एक प्रोटोकॉल प्रस्तुत किया जाता है जो रैखिक मिश्रित प्रभाव मॉडल से संबंधित जानकारी को संश्लेषित करता है।

Abstract

यहां, हमने उत्तर-पश्चिमी चीन के शिनजियांग प्रांत में स्थित ७७९ नमूना भूखंडों से २१८९८ पिकेरा एस्पेराटा पेड़ों सहित एक डेटासेट के आधार पर 5 साल के बेसल क्षेत्र वेतन वृद्धि का एक व्यक्तिगत पेड़ मॉडल विकसित किया । एक ही नमूना इकाई से टिप्पणियों के बीच उच्च सहसंबंधों को रोकने के लिए, हमने स्टोचस्टिक परिवर्तनशीलता के लिए यादृच्छिक भूखंड प्रभाव के साथ एक रैखिक मिश्रित प्रभाव दृष्टिकोण का उपयोग करके मॉडल विकसित किया। अवशिष्ट परिवर्तनशीलता को समझाने के लिए विभिन्न पेड़ और स्टैंड-लेवल चर, जैसे पेड़ के आकार, प्रतिस्पर्धा और साइट की स्थिति के लिए सूचकांक, निश्चित प्रभाव के रूप में शामिल किए गए थे। इसके अलावा, विषमता और ऑटोकोर्लेशन को विचरण कार्यों और ऑटोकोर्लेशन संरचनाओं को पेश करके वर्णित किया गया था। इष्टतम रैखिक मिश्रित प्रभाव मॉडल कई फिट आंकड़ों द्वारा निर्धारित किया गया था: Akaike की जानकारी मापदंड, Bayesian जानकारी कसौटी, logarithm संभावना है, और एक संभावना अनुपात परीक्षण । परिणामों से संकेत मिलता है कि व्यक्तिगत-पेड़ बेसल क्षेत्र वेतन वृद्धि के महत्वपूर्ण चर स्तन ऊंचाई पर व्यास के व्युत्क्रम परिवर्तन, विषय पेड़ से बड़े पेड़ों के बेसल क्षेत्र, प्रति हेक्टेयर पेड़ों की संख्या, और ऊंचाई थे । इसके अलावा, विचरण संरचना में त्रुटियों को घातीय कार्य द्वारा सबसे सफलतापूर्वक मॉडलिंग की गई थी, और ऑटोकोर्सेशन को पहले क्रम की ऑटोरिंgressive संरचना (एआर (1)) द्वारा काफी हद तक सही किया गया था। साधारण कम वर्गों प्रतिगमन का उपयोग करके मॉडल के सापेक्ष रैखिक मिश्रित प्रभाव मॉडल के प्रदर्शन में काफी सुधार हुआ था।

Introduction

यहां तक कि वृद्ध मोनोकल्चर की तुलना में, कई उद्देश्यों के साथ असमान-वृद्ध मिश्रित प्रजातियों के वन प्रबंधन को हालही में1,2,3पर बढ़ा हुआ ध्यान मिला है। मजबूत वन प्रबंधन रणनीतियों को तैयार करने के लिए विभिन्न प्रबंधन विकल्पों की भविष्यवाणी आवश्यक है, विशेष रूप से जटिल असमान-वृद्ध मिश्रित प्रजातियों के वन4के लिए। विभिन्न प्रबंधन योजनाओं के तहत वृक्ष या विकास और फसल की भविष्यवाणी करने के लिए वन विकास और उपज मॉडलकाव्यापक रूप से उपयोग किया गयाहै। वन विकास और उपज मॉडल को व्यक्तिगत-पेड़ मॉडल, आकार-वर्ग मॉडल, और पूरे स्टैंडविकास मॉडल6,7, 8में वर्गीकृत कियाजाताहै। दुर्भाग्य से, आकार वर्ग मॉडल और पूरे खड़े मॉडल असमान आयु वर्ग के मिश्रित प्रजातियों के जंगलों के लिए उपयुक्त नहीं हैं, जो एक और अधिक विस्तृत विवरण की आवश्यकता के लिए वन प्रबंधन निर्णय लेने की प्रक्रिया का समर्थन करते हैं । इस कारण से, व्यक्तिगत-पेड़ के विकास और उपज मॉडल को पिछले कुछ दशकों में विभिन्न प्रजातियों की रचनाओं, संरचनाओं औरप्रबंधन रणनीतियों9,10,11के साथ वन स्टैंड के लिए भविष्यवाणी करने की क्षमता के कारण बढ़ा हुआ ध्यान मिला है।

साधारण कम से कम वर्ग (ओल्स) प्रतिगमन व्यक्तिगत-वृक्ष विकास मॉडल 12 , 13 ,14, 15के विकास के लिए सबसे अधिक उपयोग की जाने वाली विधि है। एक ही नमूना इकाई (यानी, नमूना भूखंड या पेड़) पर समय की एक निश्चित लंबाई पर बार-बार एकत्र किए गए व्यक्तिगत-पेड़ विकास मॉडलों के लिए डेटासेट में एक पदानुक्रमित स्टोचस्टिक संरचना होती है, जिसमें स्वतंत्रता की कमी होती है और टिप्पणियों के बीच उच्च स्थानिक और लौकिक संबंध10,16होते हैं। पदानुक्रमित स्टोचस्टिक संरचना ओल्स प्रतिगमन की मौलिक मान्यताओं का उल्लंघन करती है: अर्थात् स्वतंत्र अवशिष्ट और सामान्य रूप से समान भिन्नता के साथ डेटा वितरित किया जाता है। इसलिए, ओल्स प्रतिगमन का उपयोग अनिवार्य रूप से इन आंकड़ों के लिए पैरामीटर अनुमानों की मानक त्रुटि13,14के पक्षपातपूर्ण अनुमानों का उत्पादन करता है ।

मिश्रित प्रभाव मॉडल जटिल संरचनाओं के साथ डेटा का विश्लेषण करने के लिए एक शक्तिशाली उपकरण प्रदान करते हैं, जैसे कि दोहराया गया उपाय डेटा, देशांतर डेटा, और बहु-स्तरीय डेटा। मिश्रित प्रभाव मॉडल दोनों निश्चित घटकों से मिलकर बनता है, पूरी आबादी के लिए आम है, और यादृच्छिक घटक, जो प्रत्येक नमूना स्तर के लिए विशिष्ट है । इसके अलावा, मिश्रित प्रभाव मॉडल गैर-विकर्ण विचरण-सहवयितसंरचना मैट्रिस17, 18,19को परिभाषित करके अंतरिक्ष और समय में विषमता और ऑटोकोर्लिएलेशन को ध्यान में रखते हैं। इस कारण से, वानिकी में मिश्रित प्रभाव मॉडल का बड़े पैमाने पर उपयोग किया गया है, जैसे व्यास-ऊंचाई मॉडल20,21,क्राउन मॉडल22,23,स्वयं-पतले मॉडल24,25,और विकास मॉडल26,27।

यहां, मुख्य उद्देश्य एक रैखिक मिश्रित प्रभाव दृष्टिकोण का उपयोग करके एक व्यक्तिगत-पेड़ बेसल क्षेत्र वेतन वृद्धि मॉडल विकसित करना था। हमें उम्मीद है कि मिश्रित प्रभाव दृष्टिकोण मोटे तौर पर लागू किया जा सकता है ।

Protocol

1. डेटा तैयार करना मॉडलिंग डेटा तैयार करें, जिसमें व्यक्तिगत-पेड़ की जानकारी (1.3 मीटर पर स्तन ऊंचाई पर प्रजातियां और व्यास) और प्लॉट जानकारी (ढलान, पहलू और ऊंचाई) शामिल हैं। इस अध्ययन में, डेटा 8 (२००९) और 9…

Representative Results

पी एस्परेटा के लिए बेसिक बेसल एरिया इंक्रीमेंट मॉडल को समीकरण (7) के रूप में व्यक्त किया गया था । पैरामीटर अनुमान, उनके संबंधित मानक त्रुटियां, और फिट की कमी के आंकड़े तालिका 2में दिखाए गए हैं । अ…

Discussion

मिश्रित प्रभाव मॉडलों के विकास के लिए एक महत्वपूर्ण मुद्दा यह निर्धारित करना है कि किन मापदंडों को यादृच्छिक प्रभाव माना जा सकता है और जिन्हें निश्चित प्रभाव माना जाना चाहिए34,35. ?…

Declarações

The authors have nothing to disclose.

Acknowledgements

इस शोध को केंद्रीय विश्वविद्यालयों के लिए मौलिक अनुसंधान कोष, अनुदान संख्या 2019GJZL04 द्वारा वित्त पोषित किया गया था। हम डेटा तक पहुंच प्रदान करने के लिए वन सूची और योजना अकादमी, राष्ट्रीय वानिकी और चरागाह प्रशासन, चीन में प्रोफेसर Weisheng Zeng को धन्यवाद देते हैं ।

Materials

Computer acer
Microsoft Office 2013
R x64 3.5.1

Referências

  1. Meng, J., Lu, Y., Ji, Z. Transformation of a Degraded Pinus massoniana Plantation into a Mixed-Species Irregular Forest: Impacts on Stand Structure and Growth in Southern China. Forests. 5 (12), 3199-3221 (2014).
  2. Sharma, A., Bohn, K., Jose, S., Cropper, W. P. Converting even-aged plantations to uneven-aged stand conditions: A simulation analysis of silvicultural regimes with slash pine (Pinus elliottii Engelm). Forest Science. 60 (5), 893-906 (2014).
  3. Zhu, J., et al. Feasibility of implementing thinning in even-aged Larix olgensis plantations to develop uneven-aged larch–broadleaved mixed forests. Journal of Forest Research. 15 (1), 71-80 (2010).
  4. Leites, L. P., Robinson, A. P., Crookston, N. L. Accuracy and equivalence testing of crown ratio models and assessment of their impact on diameter growth and basal area increment predictions of two variants of the Forest Vegetation Simulator. Canadian Journal of Forest Research. 39 (3), 655-665 (2009).
  5. Pretzsch, H. . Forest Dynamics, Growth and Yield. , (2009).
  6. Weiskittel, A. R., et al. Forest growth and yield modeling. Forest Growth & Yield Modeling. 7 (2), 223-233 (2002).
  7. Burkhart, H. E., Tomé, M. . Modeling Forest Trees and Stands. , (2012).
  8. Zhang, X. Chinese Academy Of Forestry. A linkage among whole-stand model, individual-tree model and diameter-distribution model. Journal of Forest Science. 56 (56), 600-608 (2010).
  9. Peng, C. Growth and yield models for uneven-aged stands: past, present and future. Forest Ecology & Management. 132 (2), 259-279 (2000).
  10. Lhotka, J. M., Loewenstein, E. F. An individual-tree diameter growth model for managed uneven-aged oak-shortleaf pine stands in the Ozark Highlands of Missouri, USA. Forest Ecology & Management. 261 (3), 770-778 (2011).
  11. Porté, A., Bartelink, H. H. Modelling mixed forest growth: a review of models for forest management. Ecological Modelling. 150 (1), 141-188 (2002).
  12. Moses, L. E., Gale, L. C., Altmann, J. Methods for analysis of unbalanced, longitudinal, growth data. American Journal of Primatology. 28 (1), 49-59 (2010).
  13. Biging, G. S. Improved Estimates of Site Index Curves Using a Varying-Parameter Model. Forest Science. 31 (31), 248-259 (1985).
  14. Kowalchuk, R. K., Keselman, H. J. Mixed-model pairwise multiple comparisons of repeated measures means. Psychological Methods. 6 (3), 282-296 (2001).
  15. Hayes, A. F., Cai, L. Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behavior Research Methods. 39 (4), 709-722 (2007).
  16. Gutzwiller, K. J., Riffell, S. K. . Using Statistical Models to Study Temporal Dynamics of Animal-Landscape Relations. , (2007).
  17. Calama, R., Montero, G. . Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach. 39, (2005).
  18. Vonesh, E. F., Chinchilli, V. M. Linear and nonlinear models for the analysis of repeated measurements. Journal of Biopharmaceutical Statistics. 18 (4), 595-610 (1996).
  19. Zobel, J. M., Ek, A. R., Burk, T. E. Comparison of Forest Inventory and Analysis surveys, basal area models, and fitting methods for the aspen forest type in Minnesota. Forest Ecology & Management. 262 (2), 188-194 (2011).
  20. Sharma, M., Parton, J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology & Management. 249 (3), 187-198 (2007).
  21. Crecente-Campo, F., Tomé, M., Soares, P., Diéguez-Aranda, U. A generalized nonlinear mixed-effects height–diameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology & Management. 259 (5), 943-952 (2010).
  22. Fu, L., Sharma, R. P., Hao, K., Tang, S. A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China. Forest Ecology & Management. 389 (2017), 364-373 (2017).
  23. Hao, X., Yujun, S., Xinjie, W., Jin, W., Yao, F. Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province, southeast China. Plos One. 10 (4), 0122257 (2015).
  24. Vanderschaaf, C. L., Burkhart, H. E. Comparing methods to estimate Reineke’s Maximum Size-Density Relationship species boundary line slope. Forest Science. 53 (3), 435-442 (2007).
  25. Zhang, L., Bi, H., Gove, J. H., Heath, L. S. A comparison of alternative methods for estimating the self-thinning boundary line. Canadian Journal of Forest Research. 35 (6), 1507-1514 (2005).
  26. Hart, D. R., Chute, A. S. Estimating von Bertalanffy growth parameters from growth increment data using a linear mixed-effects model, with an application to the sea scallop Placopecten magellanicus. Ices Journal of Marine Science. 66 (9), 2165-2175 (2009).
  27. Uzoh, F. C. C., Oliver, W. W. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model. Forest Ecology & Management. 256 (3), 438-445 (2008).
  28. Condés, S., Sterba, H. Comparing an individual tree growth model for Pinus halepensis Mill. in the Spanish region of Murcia with yield tables gained from the same area. European Journal of Forest Research. 127 (3), 253-261 (2008).
  29. Pokharel, B., Dech, J. P. Mixed-effects basal area increment models for tree species in the boreal forest of Ontario, Canada using an ecological land classification approach to incorporate site effects. Forestry. 85 (2), 255-270 (2012).
  30. Wykoff, W. R. A basal area increment model for individual conifers in the northern Rocky Mountains. Forest Science. 36 (4), 1077-1104 (1990).
  31. Stage, A. R. Notes: An Expression for the Effect of Aspect, Slope, and Habitat Type on Tree Growth. Forest Science. 22 (4), 457-460 (1976).
  32. Gregorie, T. G. Generalized Error Structure for Forestry Yield Models. Forest Science. 33 (2), 423-444 (1987).
  33. Zhao, L., Li, C., Tang, S. Individual-tree diameter growth model for fir plantations based on multi-level linear mixed effects models across southeast China. Journal of Forest Research. 18 (4), 305-315 (2013).
  34. Hall, D. B., Bailey, R. L. Modeling and Prediction of Forest Growth Variables Based on Multilevel Nonlinear Mixed Models. Forest Science. 47 (3), 311-321 (2001).
  35. Yang, Y., Huang, S., Meng, S. X., Trincado, G., Vanderschaaf, C. L. A multilevel individual tree basal area increment model for aspen in boreal mixedwood stands : Journal canadien de la recherche forestière. Revue Canadienne De Recherche Forestière. 39 (39), 2203-2214 (2009).
  36. Pinheiro, J. C., Bates, D. M. Mixed-effects models in S and S-Plus. Publications of the American Statistical Association. 96 (455), 1135-1136 (2000).

Play Video

Citar este artigo
Wang, W., Bai, Y., Jiang, C., Meng, J. Development of an Individual-Tree Basal Area Increment Model using a Linear Mixed-Effects Approach. J. Vis. Exp. (161), e60827, doi:10.3791/60827 (2020).

View Video