Summary

简化反向遗传学方法,恢复重组性轮状病毒表达报告蛋白

Published: April 17, 2020
doi:

Summary

从质粒DNA生成重组性轮状病毒为研究轮状病毒复制和发病机制以及发展轮状病毒表达载体和疫苗提供了重要工具。在这里,我们描述了一种简化的反向遗传学方法来产生重组性轮状病毒,包括表达荧光报告蛋白的菌株。

Abstract

轮状病毒是一大批正在进化的分段双链RNA病毒,在许多哺乳动物和鸟类宿主物种(包括人类)幼年时引起严重的肠胃炎。随着轮状病毒反向遗传学系统的出现,利用定向诱变探索轮状病毒生物学,修改和优化现有的轮状病毒疫苗,开发轮状病毒多目标疫苗载体成为可能。在本报告中,我们描述了一个简化的反向遗传学系统,该系统允许有效和可靠地恢复重组性轮状病毒。该系统基于T7转录载体的共同转染,表达全长轮状病毒(+)RNA和CMV载体编码RNA封盖酶到BHK细胞中,产生T7RNA聚合酶(BHK-T7)。重组轮状病毒通过监督带有MA104细胞的转染BHK-T7细胞进行扩增,这是一种对病毒生长高度宽松的猴子肾细胞系。在本报告中,我们还描述了一种生成重组轮状病毒的方法,该方法通过在基因组段 7 (NSP3) 中引入 2A 转化停止重启元件来表达单独的荧光报告蛋白。这种方法避免删除或修改任何病毒开放阅读框架,从而允许产生重组轮状病毒,在表达荧光蛋白的同时保留功能齐全的病毒蛋白。

Introduction

轮状病毒是婴儿和幼儿以及许多其他哺乳动物和鸟类1幼虫严重肠胃炎的主要原因。作为Reoviridae家族的成员,轮状病毒具有分段的双链RNA(dsRNA)基因组。基因组部分包含在由三个同心蛋白质2层形成的非包络的二体体上。根据基因组片段的测序和植物遗传学分析,确定了9种轮状病毒(A+D、F+J)3个。3那些由轮状病毒A类组成的菌株是造成绝大多数人类疾病的罪魁祸首。从过去十年开始,将轮状病毒疫苗引入儿童免疫计划与轮状病毒死亡率和发病率的显著降低有关。最值得注意的是,与轮状病毒相关的儿童死亡人数从2000年的约528,000人下降到2016年的128,500人,,5。轮状病毒疫苗是从病毒的活衰减菌株中配制的,在6个月大时给儿童施用2至3剂。大量基因多样化的轮状病毒株在人类和其他哺乳动物物种中循环,加上它们通过诱变和重新分类迅速进化的能力,可能导致感染儿童66、7、87,8的轮状病毒类型的抗原变化。这种变化可能损害现有疫苗的功效,需要更换或修改。

完全基于质粒的反向遗传学系统的发展,使操纵11个轮状病毒基因组片段中的任何一个,直到最近才达到9个。随着这些系统的提供,有可能解开轮状病毒复制和发病机制的分子细节,开发改进的抗轮状病毒化合物的高通量筛选方法,并创造新的可能更有效的轮状病毒疫苗类别。在轮状病毒复制期间,封盖病毒(+)RNA不仅指导病毒蛋白的合成,而且还作为后代dsRNA基因组片段10,11,11的合成模板。迄今描述的所有轮状病毒反向遗传学系统都依赖于T7转录载体的转染到哺乳动物细胞系中,作为cDNA衍生(+)RNA的来源,用于恢复重组病毒9,9、12、13。,13在转录载体中,全长病毒cDNA位于上游T7促进剂和下游肝炎三角洲病毒(HDV)核糖核素之间,因此病毒(+)RNA由含有正宗5’和3’termini的T7RNA聚合酶合成(图1A)。在第一代反向遗传学系统中,重组病毒是通过用11 T7(pT7)转录婴儿仓鼠肾细胞,表达T7RNA聚合酶(BHK-T7)的重组病毒, 分别对西米亚SA11病毒株的一种独特的(+)RNA和三个CMV促进驱动表达质粒进行定向合成,一个编码禽流感病毒p10FAST融合蛋白和两个编码子单元的病毒D1R-D12L封盖酶复合物9。在转染的BHK-T7细胞中产生的重组SA11病毒通过用MA104细胞进行监督而放大,MA104细胞是一种细胞系,允许轮状病毒生长。第一代反向遗传学系统的一个修改版本被描述为不再使用支持质粒12。相反,经过修改的系统仅仅通过用11 SA11 T7转录载体转染BHK-T7细胞,就成功地生成重组轮状病毒,并警告病毒工厂(病毒质)构建基块(非结构蛋白NSP2和NSP5)的载体添加水平比其他载体14、15,15高3倍。反向遗传学系统的改性版本也已经开发,以支持恢复人类KU和Odelia的轮状病毒菌株16,17。16,轮状病毒基因组非常适应反向遗传学的操纵,重组病毒生成至今,突变引入VP418、NSP19、NSP219、NSP320、2120,21和NSP522、23。922,2319迄今产生的最有用的病毒包括那些被设计成表达荧光报告蛋白(FPs)的病毒9、12、21、24、25。,12,21,24,25

在本出版物中,我们为在实验室中用于生成SA11轮状病毒重组菌株的反向遗传学系统提供了协议。我们协议的主要特征是与11个pT7转录载体共同转染BHK-T7细胞(修改为包括pT7/NSP2SA11和pT7/NSP5SA11载体的3倍水平)和一个CMV表达载体编码非洲猪瘟病毒(ASFV)NP868R封盖酶21(图2)。在我们手中,NP868R质粒的存在导致通过转染BHK-T7细胞产生更高的重组病毒的结节。在本出版物中,我们还提供了修改 pT7/NSP3SA11 质粒的协议,以便生成重组病毒,不仅表达第 7 段蛋白产品 NSP3,还表示单独的 FP。这是通过重新设计pT7/NSP3SA11质粒中的NSP3开放读取帧(ORF)来包含下游的2A平移停止重启元件,然后是FP ORF(1B)24,26。24,26通过这种方法,我们产生了反应重组轮状病毒,表达各种FP:UnaG(绿色)、mKate(远红色)、mRuby(红色)、TagBFP(蓝色)、CFP(青色)和YFP(黄色)24、27、28 。24,27,28这些FP表达轮状病毒是在不删除NSP3 ORF的情况下制造的,从而产生病毒,这些病毒有望编码全功能病毒蛋白。

Protocol

1. 介质制备和细胞培养维护 获取婴儿仓鼠肾细胞组成表达T7RNA聚合酶(BHK-T7)和非洲绿猴肾MA104细胞。注:BHK-T7(或BSR-T7)细胞不是商业性的,而是利用反向遗传学研究RNA病毒生物学的实验室的一个常见细胞系。该协议中使用的BHK-T7细胞系来自Ursula J. Buchholz博士(美国马里兰州贝塞斯达国立卫生研究院),他是表达T7RNA聚合酶29的原BHK细胞系的共同开发者。MA104 单元格?…

Representative Results

本文中描述的反向遗传学协议通过多个不同的步骤进行:(1) BHK-T7细胞与轮状病毒pT7转录载体和pCMV/NP868R表达质粒,共转导, (2) 监督具有MA104细胞的转染BHK-T7细胞;(3)使用MA104细胞对BHK-T7/MA104细胞中的重组病毒进行扩增;(4)使用MA104细胞分离重组病毒(图2)。在我们手中,该协议是有效的,在BHK-T7/MA104细胞赖酸(104 PFU/mL)和放大MA104细胞赖酸(1 0 x 107…

Discussion

在我们的实验室中,我们通常依靠本文描述的反向遗传学协议来产生重组SA11轮状病毒。使用这种方法,在分子生物学技术或使用轮状病毒方面经验不足的个人,即使在第一次尝试时,也能恢复重组病毒。我们按照此协议生成了近 100 种重组病毒,包括那些经过重新设计以表达外来蛋白质(例如 FPs)且包含序列添加、删除和点突变的基因组病毒。

该协议给出的条件和潜伏时间?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH赠款R03 AI131072和R21 AI144881、印第安纳大学启动基金和劳伦斯·布拉特捐赠基金的支持。我们感谢IU罗塔霍西尔实验室、乌尔里希·德塞尔贝格尔和吉多·帕帕的成员在制定反向遗传学方案方面所作的许多贡献和建议。

Materials

Baby Hamster Kidney – T7 RdRP (BHK-T7) Cells Contact: ubuchholz@niaid.nih.gov
Bio-Rad 8-16% Tris-Glycine Polyacrylamide Mini-Gel Bio-Rad 45608105
Cellometer AutoT4 viable cell counter Nexcelom
ChemiDoc MP Gel Imaging System Bio-Rad
Chloroform MP 194002
Clarity Western Enhanced Chemiluminescence (ECL) Substrate Bio-Rad 170-5060
Competent E.coli DH5alpha Bacteria Lucigen 60602-2
Complete Protease Inhibitor Pierce A32965
Disposable Transfer Pipettes, Ultrafine Extended Tips MTC Bio P4113-11
Dulbecco's Modified Eagle Medium (DMEM) Lonza 12-604F
Eagle's Minimal Essential Medium, 2x (2xEMEM) Quality Biological 115-073-101
Ethanol, Absolute (200 proof) Fisher Bioreagents BP2818-500
Ethidium Bromide Solution (10 mg/ml) Invitrogen 15585-011
Fetal Bovine Serum (FBS) Corning 35-010-CV
Fetal Bovine Serum (FBS), Heat Inactivated Corning 35-011-CV
Flag M2 Antibody, Mouse Monoclonal Sigma-Aldrich F1804
GenEluate HP Plasmid Midiprep Kit Sigma NA0200-1KT
Geneticin (G-418) Invitrogen 10131-027
Gibco FluroBrite DMEM ThermoFisher A1896701 DMEM with low background fluorescence
Glasgow Minimal Essential Medium (GMEM) Gibco 11710-035
Goat Anti-Rabbit IgG, Horseradish Peroxidase (HRP) Conjugated Cell-Signaling Technology 7074S
Guinea Pig Anti-NSP3 Antiserum Patton lab lot 55068
Guinea Pig Anti-VP6 Antierum Patton lab lot 53963
Horse Anti-Guinea Pig IgG, Horseradish Peroxidase (HRP) Conjugated KPL 5220-0366
Horse Anti-Mouse IgG, Horseradish eroxidase (HRP) Conjugated Cell-Signaling Technology 7076S
iNtRON Biotechnology e-Myco Mycoplasma PCR Detection Kit JH Science 25235
Isopropyl alcohol Macron 3032-02
L-glutamine Solution (100x) Gibco 25030-081
Luria Agar Powder (Miller's LB Agar) RPI research products L24020-2000.0
Medium 199 (M199) Culture Medium Hyclone Sh30253.01
Minimal Essential Medium -Eagle Joklik's Forumation (SMEM) Lonza 04-719Q
Monkey Kidney (MA104) Cells ATCC ATCC CRL-2378.1
NanoDrop One Spectrophotometer ThermoScientific
Neutral Red Solution (0.33%) Sigma-Aldrich N2889-100ml
Non-Essential Amino Acid Solution (100x) Gibco 11140-050
Novex 10% Tris-Glycine Polyacrylamide Mini-Gel Invitrogen XP00102BOX
Nuclease-Free Molecular Biology Grade Water Invitrogen 10977-015
NucleoSpin Gel and PCR Clean-Up Kit Takara 740609.25
Opti-MEM Reduced Serum Medium Gibco 31985-070
Pellet pestle (RNase-free, disposable) Fisher 12-141-368
Penicillin-Streptomycin Solution, (100x penn-strep) Corning 30-002-Cl
Phosphate Buffered Saline (PBS), 10x Fisher Bioreagents BP399-20
Porcine Trypsin, Type IX-S Sigma-Aldrich T0303
PureYield Plasmid Miniprep System Promega A1223
Qiagen Plasmid Maxi Kit Qiagen 12162
Qiagen Plasmid Midi Kit Qiagen 12143
QIAprep Spin Miniprep Kit Qiagen 27104
SA11 pT7 Transcription Vectors Addgene 89162-89172
SA11 pT7/NSP3 Transcription Vectors Expressing Fluorescent Proteins Contact: jtpatton@iu.edu
SeaKem LE Agarose Lonza 50000 For gel electrophoresis
SeaPlaque agarose Lonza 50100 For plaque assay
Superscript III One-Step RT-PCR kit Invitrogen 12574-035
Trans-Blot Turbo Nitrocellulose Transfer Kit Bio-Rad 170-4270
Trans-Llot Turbo Transfer System Bio-Rad
TransIT-LTI Transfection Reagent Mirus MIR2306
Tris-Glycine-SDS Gel Running Buffer (10x) Bio-Rad 161-0772
Triton X 100 Fisher Bioreagents BP151-500
Trizol RNA Extraction Reagent Ambion 15596026
Trypan blue Corning 25-900-CI
Trypsin (0.05%)-EDTA (0.1%) Cell Dissociation Solution Quality Biological 118-087-721
Tryptose Phosphate Broth Gibco 18050-039
Tween-20 VWR 0777-1L
Vertrel VF solvent Zoro G0707178
Zoe Fluorescent Live Cell Imager Bio-Rad

Referências

  1. Crawford, S. E., et al. Rotavirus infection. Nature Reviews Disease Primers. 3 (17083), 1-16 (2017).
  2. Settembre, E. C., Chen, J. Z., Dormitzer, P. R., Grigorieff, N., Harrison, S. C. Atomic model of an infectious rotavirus particle. The EMBO Journal. 30 (2), 408-416 (2011).
  3. . Taxonomic information. Virus taxonomy: 2018b release Available from: https://talk.ictvonline.org/taxonomy (2019)
  4. Tate, J. E., Burton, A. H., Boschi-Pinto, C., Parashar, U. D. World Health Organization-Coordinated Global Rotavirus Surveillance Network. Global, regional, and national estimates of rotavirus mortality in children <5 years of age. Clinical Infectious Diseases. 62, 96-105 (2016).
  5. Troeger, C., et al. Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatrics. 172 (10), 958-965 (2018).
  6. Matthijnssens, J., Van Ranst, M. Genotype constellation and evolution of group A rotaviruses infecting humans. Current Opinion in Virology. 2 (4), 426-433 (2012).
  7. McDonald, S. M., Nelson, M. I., Turner, P. E., Patton, J. T. Reassortment in segmented RNA viruses: mechanisms and outcomes. Nature Reviews Microbiology. 14 (7), 448-460 (2016).
  8. Patton, J. T. Rotavirus diversity and evolution in the post-vaccine world. Discovery Medicine. 13 (68), 85-97 (2012).
  9. Kanai, Y., et al. Entirely plasmid-based reverse genetics system for rotaviruses. Proceedings of the National Academy of Sciences of the United States of America. 114 (9), 2349-2354 (2017).
  10. Trask, S. D., McDonald, S. M., Patton, J. T. Structural insights into the coupling of virion assembly and rotavirus replication. Nature Reviews Microbiology. 10 (3), 165-177 (2012).
  11. Guglielmi, K. M., McDonald, S. M., Patton, J. T. Mechanism of intraparticle synthesis of the rotavirus double-stranded RNA genome. Journal of Biological Chemistry. 285 (24), 18123-18128 (2010).
  12. Komoto, S., et al. Generation of recombinant rotaviruses expressing fluorescent proteins by using an optimized reverse genetics system. Journal of Virology. 92 (13), 00588-00618 (2018).
  13. Trask, S. D., Taraporewala, Z. F., Boehme, K. W., Dermody, T. S., Patton, J. T. Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus. Proceedings of the National Academy of Sciences of the United States of America. 107, 18652-18657 (2010).
  14. Fabbretti, E., Afrikanova, I., Vascotto, F., Burrone, O. R. Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo. Journal of General Virology. 80, 333-339 (1999).
  15. Eichwald, C., Rodriguez, J. F., Burrone, O. R. Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. Journal of General Virology. 85, 625-634 (2004).
  16. Kawagishi, T., et al. Reverse genetics system for a human group A rotavirus. Journal of Virology. , (2019).
  17. Komoto, S., et al. Generation of infectious recombinant human rotaviruses from just 11 cloned cDNAs encoding the rotavirus genome. Journal of Virology. 93 (8), 02207-02218 (2019).
  18. Mohanty, S. K., et al. A point mutation in the rhesus rotavirus VP4 protein generated through a rotavirus reverse genetics system attenuates biliary atresia in the murine model. Journal of Virology. 91 (15), 00510-00517 (2017).
  19. Navarro, A., Trask, S. D., Patton, J. T. Generation of genetically stable recombinant rotaviruses containing novel genome rearrangements and heterologous sequences by reverse genetics. Journal of Virology. 87, 6211-6220 (2013).
  20. Duarte, M., et al. Rotavirus infection alters splicing of the stress-related transcription factor XBP1. Journal of Virology. 93 (5), 01739-01818 (2019).
  21. Philip, A. A., et al. Generation of recombinant rotavirus expressing NSP3-UnaG fusion protein by a simplified reverse genetics system. Journal of Virology. , 1616-1619 (2019).
  22. Papa, G., et al. Recombinant rotaviruses rescued by reverse genetics reveal the role of NSP5 hyperphosphorylation in the assembly of viral factories. Journal of Virology. , (2019).
  23. Komoto, S., et al. Reverse genetics system demonstrates that rotavirus nonstructural protein NSP6 is not essential for viral replication in cell culture. Journal of Virology. 91 (21), 00695-00717 (2017).
  24. Philip, A. A., et al. Collection of recombinant rotaviruses expressing fluorescent reporter proteins. Microbiology Resource Announcements. 8 (27), 00523-00619 (2019).
  25. Kanai, Y., et al. Development of stable rotavirus reporter expression systems. Journal of Virology. , 01774-01818 (2019).
  26. Donnelly, M. L., et al. The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. Journal of General Virology. 82, 1027-1041 (2001).
  27. Kumagai, A., et al. A bilirubin-inducible fluorescent protein from eel muscle. Cell. 153, 1602-1611 (2013).
  28. Rodriguez, E. A., et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends in Biochemical Sciences. 42, 111-129 (2017).
  29. Buchholz, U. J., Finke, S., Conzelmann, K. K. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. Journal of Virology. 73, 251-259 (1999).
  30. Centers for Disease Control and Prevention (CDC). . Biosafety in microbiological and biomedical laboratories (BMBL), 5th edition. , (2009).
  31. Arnold, M., Patton, J. T., McDonald, S. M. Culturing, storage, and quantification of rotaviruses. Current Protocols in Microbiology. 15 (1), (2009).
  32. Benureau, Y., Huet, J. C., Charpilienne, A., Poncet, D., Cohen, J. Trypsin is associated with the rotavirus capsid and is activated by solubilization of outer capsid proteins. Journal of General Virology. 86 (11), 3143-3151 (2005).
check_url/pt/61039?article_type=t

Play Video

Citar este artigo
Philip, A. A., Dai, J., Katen, S. P., Patton, J. T. Simplified Reverse Genetics Method to Recover Recombinant Rotaviruses Expressing Reporter Proteins. J. Vis. Exp. (158), e61039, doi:10.3791/61039 (2020).

View Video