Summary

使用虚拟现实步行模拟器调查行人行为

Published: June 09, 2020
doi:

Summary

该协议描述了步行模拟器的使用,该模拟器是一种安全且生态有效的方法,用于研究行人在移动交通中的行为。

Abstract

要成功过马路,个人必须与移动的车辆协调其移动。本文描述了在沉浸式虚拟环境中,人们在跑步机上行走以拦截两辆移动车辆之间的间隙的行走模拟器。虚拟现实允许对间隙交叉行为进行安全和生态上不同的调查。操纵初始起始距离可以进一步理解参与者的速度调节,同时接近间隙。对于各种间隙交叉变量(如初始距离、车辆大小和间隙大小),可以评估速度轮廓。每个步行模拟都产生一个位置/时间序列,可以根据间隙特征通知速度如何以不同方式调整。研究行人行为和行为动力学的研究人员可以使用这种方法,同时在安全、逼真的环境中雇用人类参与者。

Introduction

间隙交叉,一种拦截行为,需要移动自己相对于两个移动的车辆之间的间隙1,2,3,4。间隙交叉涉及感知迎面而来的车辆和控制与移动交通相关的移动。这需要行动与感知的信息精确耦合。许多以前的研究已经检查了感知判断和差距交叉行为使用人工道路,路边模拟器,和屏幕投影虚拟环境5,6。然而,以往的过路文献对这种行为有不完全的了解,这些研究的生态有效性受到质疑

该协议为研究虚拟现实中的间隙交叉行为提供了研究范式,从而最大限度地提高了生态有效性。步行模拟器用于检查间隙交叉行为的感知和操作。模拟器为参与者提供了一个安全的行走环境,在模拟环境中的实际行走使研究人员能够充分捕捉感知和行动之间的相互关系。实际过马路的人比那些只口头决定过马路的人更准确地判断时间差距。虚拟环境在生态上是有效的,允许研究人员通过更改程序的参数来轻松更改与任务相关的变量。

在这项研究中,对参与者的初始起始位置进行操纵,以评估速度控制,同时接近间隙。该协议允许在拦截间隙的同时对行人运动控制进行调查。分析参与者的速度随着时间的变化,可以功能解释速度调整,而他或她接近差距。

此外,被截获对象的空间和时间特征指定了人员如何移动。在间隙交叉环境中,间隙尺寸(车辆间距离)和车辆尺寸的变化也会影响行人的运动变化。因此,操纵间隙特征可能会导致参与者接近行为的速度调整。因此,操纵间隙特征(即间隙大小和车辆尺寸)为根据各种间隙特征了解交叉行为变化提供了有价值的信息。这项研究考察了儿童和青少年在各种交叉环境中跨越间隙时如何调节速度。对于不同起始位置、车辆间距离和车辆尺寸的各种间隙交叉环境,可以评估速度调节配置文件。

Protocol

这个实验协议涉及人类受试者。这一程序得到了昆山国立大学研究委员会的批准。 1. 设备准备 注:设备包括:带鼠标、键盘和显示器的个人电脑(PC,3.3 GHz,带8GM);安装在台式电脑上的步行模拟器软件;定制跑步机(宽度:0.67米,长度:1.26米,高度:1.10米),配有扶手、皮带和带USB电缆的磁性编码器;和 Oculus 裂谷虚拟现实设备(DK1,美国,1280 x 800 像素?…

Representative Results

步行模拟器可用于检查行人的交叉行为,同时操纵从路边到拦截点的初始距离和间隙特征(即间隙和车辆尺寸)。虚拟环境方法允许间隙特征的操纵,以了解动态变化的交叉环境如何影响儿童和青少年的过马路行为。 用于比较不同行人群体的交叉行为的间隙内的量化速度剖面和交叉位置。我们评估了拦截时间 (TOI) 是速度调整对参与者在间隙内位置的瞬时影响。这些代表性…

Discussion

先前的研究已经使用模拟器与投影屏幕16,17,但该协议通过完全身临其境的虚拟视图(即360度)提高生态有效性。此外,要求参与者在跑步机上行走,可以检查儿童和青少年如何根据不断变化的环境调整自己的行动。此实验设计的虚拟场景与参与者的动作同时变化,车辆在特定时间点到达行人的过线。这样可以防止参与者由于决定或准备搬迁而推迟过?…

Declarações

The authors have nothing to disclose.

Acknowledgements

韩国研究所资助了这项技术促进和贸易、工业和能源部的工作(赠款号10044775)。

Materials

Customized treadmill Kunsan National University Treadmill built for this study
Desktop PC Multiple companies Standard Desktop PC
Oculus Rift Development Kit Oculus VR, LLC DK1 Virtual reality headset
Walking Simulator Software Kunsan National University Software deloped for this experiment

Referências

  1. Bastin, J., Craig, C., Montagne, G. Prospective strategies underlie the control of interceptive actions. Human Movement Science. 25 (6), 718-732 (2006).
  2. Bastin, J., Fajen, B., Montagne, G. Controlling speed and direction during interception: An affordance-based approach. Experimental Brain Research. 201 (4), 763-780 (2010).
  3. Chardenon, A., Montagne, G., Laurent, M., Bootsma, R. J. A Robust Solution for Dealing With Environmental Changes in Intercepting Moving Balls. Journal of Motor Behavior. 37 (1), 52-64 (2005).
  4. Lenoir, M., Musch, E., Thiery, E., Savelsbergh, G. J. P. Rate of change of angular bearing as the relevant property in a horizontal intercepting task during locomotion. Journal of Motor Behavior. 34 (4), 385-401 (2002).
  5. Oxley, J. A., Ihsen, E., Fildes, B. N., Charlton, J. L., Day, R. H. Crossing roads safely: an experimental study of age differences in gap selection by pedestrians. Accident Analysis & Prevention. 37 (5), 962-971 (2005).
  6. Chihak, B. J., et al. Synchronizing self and object movement: How child and adult cyclists intercept moving gaps in a virtual environment. Journal of Experimental Psychology: Human Perception and Performance. 36, 1535-1552 (2010).
  7. te Velde, A. F., van der Kamp, J., Savelsbergh, G. J. Five-to twelve-year-olds’ control of movement velocity in a dynamic collision avoidance task. British Journal of Developmental Psychology. 26 (1), 33-50 (2008).
  8. Simpson, G., Johnston, L., Richardson, M. An investigation of road crossing in a virtual environment. Accident Analysis & Prevention. 35 (5), 787-796 (2003).
  9. Lee, D. N., Young, D. S., McLaughlin, C. M. A roadside simulation of road crossing for children. Ergonomics. 27 (12), 1271-1281 (1984).
  10. Oudejans, R. R., Michaels, C. F., van Dort, B., Frissen, E. J. To cross or not to cross: The effect of locomotion on street-crossing behavior. Ecological Psychology. 8 (3), 259-267 (1996).
  11. Grechkin, T. Y., Chihak, B. J., Cremer, J. F., Kearney, J. K., Plumert, J. M. Perceiving and acting on complex affordances: How children and adults bicycle across two lanes of opposing traffic. Journal of Experimental Psychology: Human Perception and Performance. 39 (1), 23-36 (2013).
  12. O’Neal, E. E., et al. Changes in perception-action tuning over long time scales: How children and adults perceive and act on dynamic affordances when crossing roads. Journal of Experimental Psychology: Human Perception and Performance. 44 (1), 18-26 (2018).
  13. Savelsbergh, G. J. P., Rosengren, K. S., Van der Kamp, J., Verheul, M. H., Savelsbergh, G. J. P. Catching action development. The development of movement coordination in children. Application in the field of sport, ergonomics and health sciences. , 191-212 (2003).
  14. Plumert, J. M., Kearney, J. K. Timing Is Almost Everything: How Children Perceive and Act on Dynamic Affordances. Advances in child development and behavior. 55, 173-204 (2018).
  15. Chung, H. C., Choi, G., Azam, M. Effects of Initial Starting Distance and Gap Characteristics on Children’s and Young Adults’ Velocity Regulation When Intercepting Moving Gaps. Human Factors. , (2019).
  16. Lobjois, R., Cavallo, V. Age-related differences in street-crossing decisions: The effects of vehicle speed and time constraints on gap selection in an estimation task. Accident Analysis & Prevention. 39 (5), 934-943 (2007).
  17. Lobjois, R., Cavallo, V. The effects of aging on street-crossing behavior: from estimation to actual crossing. Accident Analysis & Prevention. 41 (2), 259-267 (2009).
  18. Yu, Y., Chung, H. C., Hemingway, L., Stoffregen, T. A. Standing body sway in women with and without morning sickness in pregnancy. Gait & Posture. 37 (1), 103-107 (2013).
  19. Stoffregen, T. A., Smart, L. J. Postural instability precedes motion sickness. Brain Research Bulletin. 47 (5), 437-448 (1998).
  20. Stoffregen, T. A., Villard, S., Chen, F. C., Yu, Y. Standing posture on land and at sea. Ecological Psychology. 23 (1), 19-36 (2011).
check_url/pt/61116?article_type=t

Play Video

Citar este artigo
Chung, H. C., Kim, S. H., Choi, G., Kim, J. W., Choi, M. Y., Li, H. Using a Virtual Reality Walking Simulator to Investigate Pedestrian Behavior. J. Vis. Exp. (160), e61116, doi:10.3791/61116 (2020).

View Video