Summary

小鸡西里神经神经元的分离与培养

Published: August 08, 2020
doi:

Summary

小鸡丝神经通(CG)是寄生虫神经系统的一部分。在神经肌肉相互作用研究中,小鸡CG神经元的神经元培养被证明是有效的细胞模型。我们描述了从小鸡胚胎中解剖、分离和体外培养的详细方案。

Abstract

小鸡丝骨神经合体(CG)是寄生虫神经系统的一部分,负责眼睛中肌肉组织的内膜。这种结节是由一个同质的胆小和胆状神经元组成的,分别内维条纹和平滑的肌肉纤维。这些神经元类型都调节特定的眼部结构和功能。多年来,在肌肉-神经系统相互作用研究中,小鸡胆碱神经的神经元培养被证明是有效的细胞模型,通过胆碱性突触进行交流。胆结神经元,在其大多数,胆碱性。与以前使用的异质细胞模型相比,这种细胞模型已被证明是有用的,这些异构细胞模型包括多种神经元类型,除了胆碱。解剖学上,胆碱结节在视神经(ON)和胆状肌瘤(CF)之间局部。在这里,我们描述了从小鸡胚胎中解剖、分离和体外培养的一个详细程序。我们提供一个分步协议,以获得CG神经元高度纯净稳定的细胞培养,突出过程的关键步骤。这些文化可以在体外保持15天,在此,我们显示了CG文化的正常发展。研究结果还表明,这些神经元可以通过神经肌肉胆碱性突触与肌肉纤维相互作用。

Introduction

Ciliary结节(CG)神经元属于寄生神经系统。这些神经元是胆碱,能够建立肌肉或烟酸突触1,2,3。,31,从解剖学上讲,CG位于视神经(ON)和胆虫肌瘤(CF)之间的眼后部,由大约6000个处于早期胚胎阶段1、4,的神经元组成。在培养的第一周,硅突神经元呈现多极形态。一周后,他们开始过渡到单极状态,一个神经石延伸并形成轴孔5。此外,大约一半的CG神经元死亡之间的8至14小鸡胚胎发育,通过细胞死亡的编程过程。神经元数量的减少导致大约3000个神经元6,7,86,西里子的总种群。在体外,当生长与肌肉细胞9和CG神经元可以培养几个星期1,9时,CG神经元的数量没有减少

胆结由同性细胞神经元和胆状神经元的均匀种群组成,每个细胞群代表CG中神经元群的一半,内维眼睛的肌肉。这两种类型的神经元在结构上、解剖学和功能上是截然不同的。虹膜和透镜上的心肌神经元内侧,负责瞳孔收缩。胆道神经元内侧,增强胆道1、10、11、121,10,11的平滑肌

鸡骨结神经元的培养已被证明是研究神经肌肉突触和突触形成1,5,95有用工具1考虑到神经肌肉突触是胆碱13,使用神经群是胆碱性-CG神经元-出现作为一个潜在的替代以前的细胞模型14。这些模型包括异源神经元群体,其中只有一小部分是胆碱性。或者,在体外发育得相对较快大约15小时后已经形成突触1。CG神经元多年来一直被用作模型系统,用于不同的研究,因为它相对容易分离和操作。这些应用包括光遗传学研究,突触发育,凋亡和神经肌肉相互作用14,15。14,

我们描述了从胚胎第7天(E7)小鸡胚胎中解剖、分离和体外培养的一个详细程序。我们提供一个分步协议,以获得高度纯净和稳定的细胞培养的胆碱神经元。我们还强调了需要特别注意并改善神经元培养质量的协议的关键步骤。这些培养物可以在体外保持至少15天。

Protocol

1. 试剂制备 注:本程序所需的材料如下:钳子(第5和no 55)、手术钳、解剖培养皿(黑底)、24孔板、塑料巴斯德移液器、火抛光玻璃巴斯德移液器、10 mL注射器、0.22μm注射器过滤器。 准备和消毒协议所需的所有材料,包括玻璃盖玻片、钳子(第5和no 55)、手术钳子、培养皿(黑底)、蒸馏H2O、移液器和手术材料。 准备 0.1 毫克/mL 聚-D-Ly…

Representative Results

此过程的估计持续时间紧要取决于每个特定实验所需的产量,因此取决于需要分离的硅合体数量。对于估计产量为1 x 106细胞/mL,分离约70个硅节(35个鸡蛋)。对于这一数量的刚体,解剖过程需要2-3小时,整个手术总共需要4-5个小时。图 1A 显示了隔离协议的分步图示。识别硅丝结节可能很困难,尤其是在首次执行此协议时。胆结在视神经和胆状肌裂附近的局部(图<s…

Discussion

在该协议中,我们演示了如何准备和培养CG神经元。对于没有经验的用户来说,对西里结子的识别和解剖可能很困难。因此,我们提出了一个详细的和分步的程序,以有效地解剖E7小鸡丝骨神经,分离组织,并准备神经元培养,可以保持至少15天。通过此协议获得的 ciliion 节神经元也适合与肌肉细胞共培养。

根据研究的目的,在小鸡胚胎发育的不同发育阶段,可用作细胞模型?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作由欧洲区域发展基金(ERDF)通过 CentRO-01-0145-FEDER-00008 项目下的区域业务方案供资:脑健康 2020,CENTRO2020 CENTRO-01-0145-FEDER-00003:pAGE, CENTRO-01-0246-FEDER-00018:MEDISIS,并通过竞争2020 – 竞争力和国际化业务方案,葡萄牙国家基金通过FCT – 基金会,即国际电信协会,在UIDB/04539/2020项目下, UIDB/04501/2020,POCI-01-0145-FEDER-02212:PPBI,PTDC/SAU-NEU/104100/2008,以及个人赠款SFRH/BD/141092/141092/2 2018(M.D.),DL57/2016/CP1448/CT0009(R.O.C.),SFRH/BD/77789/2011(J.R.P.)和玛丽居里行动 – IRG,第七框架方案。

Materials

5-fluoro-2’-deoxiuridina (5'-FDU) Merck (Sigma Aldrich) F0503
Alexa Fluor 568-conjugated goat anti-chicken antibody Thermo Fisher Scientific A11041
Alexa Fluor 568-conjugated goat anti-mouse antibody Thermo Fisher Scientific A11031
Alexa Fluor 647-conjugated goat anti-mouse antibody Thermo Fisher Scientific A21235
B27 supplement (50x), serum free Invitrogen (Gibco) 17504-044
Chicken monoclonal neurofilament M Merck (Sigma Aldrich) AB5735
D-(+)-Glucose monohydrate VWR 24371.297
Fetal Bovine Serum (FBS), qualified, Brazil Invitrogen (Gibco) 10270-106
HEPES, fine white crystals, for molecular biology Fisher Scientific 10397023
Horse Serum, heat inactivated, New Zealand origin Invitrogen (Gibco) 26050-070
L-Glutamine (200 mM) Invitrogen (Gibco) 25030-081
Mouse laminin I Cultrex (R&D systems) 3400-010-02
Mouse monoclonal b-III tubulin Merck (Sigma Aldrich) T8578
Mouse monoclonal SV2 DSHB AB2315387
Multidishes, cell culture treated, BioLite, MW24 (50x) Thermo Fisher Scientific 11874235
Neurobasal medium without glutamine Invitrogen (Gibco) 21103-049
Penicillin/streptomycin (5,000 U/mL) Invitrogen (Gibco) 15070-063
Phenol red, bioreagent, suitable for cell culture Merck (Sigma Aldrich) P3532
Poly-D-Lysine Merck (Sigma Aldrich) P7886
Potassium chloride Fluka (Honeywell Reaarch Chemicals) 31248-1KG
Potassium di-hydrogen phosphate (KH2PO4) for analysis, ACS Panreac Applichem 131509-1000
Prolong Gold Antifade mounting medium with DAPI Invitrogen (Gibco) P36935
Puradisc FP 30mm Syringe Filter, Cellulose Acetate, 0.2µm, sterile 50/pk Fisher Scientific 10462200
Recombinant human ciliary neurotrophic factor (CNTF) Peprotech 450-13
Recombinant human glial cell-derived neurotrophic factor (GDNF) Peprotech 450-10
Sodium chloride for analysis, ACS, ISO Panreac Applichem 131659-1000
Sodium dihydrogen phosphate 2-hydrate (Na2HPO4·2H2O), pure, pharma grade Panreac Applichem 141677-1000
Sodium Pyruvate 100 mM (100x) Thermo Fisher 11360039
Syringe without needle, 10 mL Thermo Fisher 11587292
Trypsin 1:250 powder Invitrogen (Gibco) 27250-018

Referências

  1. Betz, W. The Formation of Synapses between Chick Embryo Skeletal Muscle and Ciliary Ganglia Grown in vitro. Journal of Physiology. 254, 63-73 (1976).
  2. Fischbach, G. D. Synapse Formation between Dissociated Nerve and Muscle Cells in Low Density Cell Cultures. Biologia do Desenvolvimento. 28, 407-429 (1972).
  3. Bernstein, B. W. Dissection and Culturing of Chick Ciliary Ganglion Neurons: A System well Suited to Synaptic Study. Methods in Cell Biology. 71, 37-50 (2003).
  4. Marwitt, R., Pilar, G., Weakly, J. N. Characterization of Two Ganglion Cell Populations in Avian Ciliary Ganglia. Brain Research. 25, 317-334 (1971).
  5. Role, L. W., Fishbach, G. D. Changes in the Number of Chick Ciliary Ganglion. Neuron Processes with Time in Cell Culture. Journal of Cell Biology. 104, 363-370 (1987).
  6. Landmesser, L., Pilar, G. Synaptic Transmission and Cell Death During Normal Ganglionic Development. Journal of Physiology. , 737-749 (1974).
  7. Koszinowski, S., et al. Bid Expression Network Controls Neuronal Cell Fate During Avian Ciliary Ganglion Development. Frontiers in Physiology. 9, 1-10 (2018).
  8. Landmesser, L., Pilar, G. Synapse Formation During Embryogenesis on Ganglion Cells Lacking a Periphery. Journal of Physiology. 241, 715-736 (1974).
  9. Nishi, R., Berg, D. K. Dissociated Ciliary Ganglion Neurons in vitro: Survival and Synapse Formation. Proceedings of the National Academy of Sciences of the United States of America. 74, 5171-5175 (1977).
  10. Nishi, R., Berg, D. K. Two Components from Eye Tissue that Differentially Stimulate the Growth and Development of Ciliary Ganglion Neurons in Cell Culture. Journal of Neuroscience. 1, 505-513 (1981).
  11. Pilar, G., Vaughan, P. C. Electrophysiological Investigations of the Pigeon iris Neuromuscular Junctions. Comparative Biochemistry and Physiology B. 29, 51-72 (1969).
  12. Landmesser, L., Pilar, G. Selective Reinnervation of Two Cell Populations in the Adult Pigeon Ciliary Ganglion. Journal of Physiology. , 203-216 (1970).
  13. Pinto, M. J., Almeida, R. D. Puzzling Out Presynaptic Differentiation. Journal of Neurochemistry. 139, 921-942 (2016).
  14. Dryer, S. E. Functional Development of the Parasympathetic Neurons of the Avian Ciliary Ganglion: A Classic Model System for the Study of Neuronal Differentiation and Development. Progress in Neurobiology. 43, 281-322 (1994).
  15. Egawa, R., Yawo, H. Analysis of Neuro-Neuronal Synapses using Embryonic Chick Ciliary Ganglion via Single-Axon Tracing, Electrophysiology, and Optogenetic Techniques. Current Protocols in Neuroscience. 87, 1-22 (2019).
  16. Pinto, M. J., Pedro, J. R., Costa, R. O., Almeida, R. D. Visualizing K48 Ubiquitination during Presynaptic Formation by Ubiquitination-Induced Fluorescence Complementation (UiFC). Frontiers in Molecular Neuroscience. 9, 1-19 (2016).
  17. Martins, L. F., et al. Mesenchymal Stem Cells Secretome-Induced Axonal Outgrowth is Mediated by BDNF. Scientific Reports. 7, 1-13 (2017).
  18. Nishi, R. Autonomic and Sensory Neuron. Methods in Cell Biology. , 249-263 (1996).
  19. Rojo, J. M., De Ojeda, G., Portolés, P. Inhibitory Mechanisms of 5-fluorodeoxyuridine on Mitogen-induced Blastogenesis of Lymphocytes. International Journal of Immunopharmacology. 6, 61-65 (1984).
  20. Hui, C. W., Zhang, Y., Herrup, K. Non-Neuronal Cells are Required to Mediate the Effects of Neuroinflammation: Results from a Neuron-Enriched Culture System. PLoS One. 11, 1-17 (2016).
  21. Crain, S. M., Alfei, L., Peterson, E. R. Neuromuscular Transmission in Cultures of Adult Human and Rodent Skeletal Muscle After Innervation in vitro by Fetal Rodent Spinal Cord. Journal of Neurobiology. 1, 471-489 (1970).
  22. Kano, M., Shimada, Y. Innervation and Acetylcholine Sensitivity of Skeletal Muscle Cells Differentiated in vitro from Chick Embryo. Journal of Cellular Physiology. 78, 233-242 (1971).
  23. Robbins, N., Yonezawa, T. Developing Neuromuscular Juctions: First Sings of Chemical Transmission during Formation in Tissue Culture. Science. 80, 395-398 (1971).
  24. Squire, L. R. . Encyclopedia of Neuroscience. , (2010).
  25. Hooisma, J., Slaaf, D. W., Meeter, E., Stevens, W. F. The Innervation of Chick Striated Muscle Fibers by the Chick Ciliary Ganglion in Tissue Culture. Brain Research. 85, 79-85 (1975).
  26. Morrison, B. M. Neuromuscular Diseases. Seminars in Neurology. , 409-418 (2016).
  27. Davies, A. M. The Trigeminal System: An Advantageous Experimental Model for Studying Neuronal Development. Development. 103, 175-183 (1988).
check_url/pt/61431?article_type=t

Play Video

Citar este artigo
Costa, F. J., Dias, M. S., Costa, R. O., Pedro, J. R., Almeida, R. D. Isolation and Culture of Chick Ciliary Ganglion Neurons. J. Vis. Exp. (162), e61431, doi:10.3791/61431 (2020).

View Video