Summary

牛卵巢皮质组织培养

Published: January 14, 2021
doi:

Summary

本文介绍了牛卵巢皮层的体外培养以及营养阶梯式饮食对卵巢微环境的影响。将卵巢皮层切片培养七天,并评估类固醇,细胞因子和卵泡分期。阶梯式饮食治疗增加了类固醇生成,导致培养物中的卵泡进展。

Abstract

从原始阶段到窦阶段的卵泡发育是卵巢皮层内的一个动态过程,其中包括来自体细胞和卵丘细胞 – 卵母细胞通讯的内分泌和旁分泌因子。人们对卵巢微环境以及周围环境中产生的细胞因子和类固醇如何影响卵泡进展或停滞知之甚少。卵巢皮层的体外培养使卵泡能够在正常化的环境中发育,该环境仍然由相邻基质支持。我们的目标是通过牛卵巢皮层的体外培养来确定营养阶梯式饮食对卵巢微环境(卵泡发育,类固醇和细胞因子产生)的影响。为了实现这一点,从小母牛身上取出卵巢皮质片,在青春期前经历两种不同的营养发育方案:控制(传统营养发育)和楼梯阶梯(发育过程中的喂养和限制),切成约0.5-1毫米3 片。这些碎片随后经过一系列洗涤并放置在组织培养插入物上,该插入物被设置在含有Waymouth培养基的孔中。卵巢皮质培养7天,每日更换培养基。进行组织学切片以确定培养前后的卵泡阶段变化,以确定营养的影响和培养的影响,而无需额外的治疗。将皮质培养基在几天内汇集以测量类固醇,类固醇代谢物和细胞因子。卵巢微环境中类固醇激素增加的趋势允许在楼梯与对照卵巢皮层培养中发生卵泡进展。卵巢皮层培养技术可以更好地了解卵巢微环境,以及内分泌分泌的改变如何影响体内和体外治疗的卵泡进展和生长。这种培养方法也可能被证明有利于测试可能改善女性卵泡进展以促进生育能力的潜在治疗方法。

Introduction

卵巢皮层代表卵泡发育发生的卵巢外层1。最初在发育中停滞的原始卵泡将被激活成为原发性,继发性,然后根据旁分泌和促性腺激素输入1,2,3,4成为前囊或三级卵泡为了更好地了解卵巢内的生理过程,组织培养可以用作体外模型,从而允许受控环境进行实验。许多研究利用卵巢组织培养物进行辅助生殖技术,生育力保存和卵巢癌的研究5,6,7。卵巢组织培养也作为研究损害卵巢健康的生殖毒素和生殖障碍的病因的模型,如多囊卵巢综合征(PCOS)8,9,10,11。因此,该培养系统适用于各种专业。

在啮齿动物中,整个胎儿或围产期性腺已被用于生殖生物学实验12,13,14,15。然而,来自大型家畜的性腺由于其体型较大且可能变性而不能作为整个器官进行培养。因此,牛和非人灵长类动物的卵巢皮层被切成更小的碎片16、17、18。许多研究已经培养了小的卵巢皮层碎片,以研究家畜和非人类灵长类动物原始卵泡启动中的各种生长因子1,17,18,19。卵巢皮质培养的使用也表明,在没有培养7天的牛和灵长类动物皮质片血清的情况下,原始卵泡启动20。Yang和Fortune在2006年用一系列睾酮剂量在10天内治疗胎儿卵巢皮层培养基,并观察到10-7M浓度的睾丸激素增加了卵泡的募集,存活率,并增加了早期卵泡的进展19。2007年,使用来自牛胎儿(妊娠5-8个月)的卵巢皮层培养物,Yang和Fortune报告了血管内皮生长因子A(VEGFA)在原发性到继发性卵泡过渡中的作用21。此外,我们的实验室已经利用卵巢皮质培养物来证明VEGFA亚型(血管生成,抗血管生成和组合)如何通过激酶结构域受体(KDR)调节不同的信号转导途径,激酶结构域受体是VEGFA结合16的主要信号转导受体。这些信息可以更好地了解不同的VEGFA同种型如何影响信号通路以引发卵泡进展或停滞。综上所述,用不同的类固醇或生长因子在体外培养卵巢皮层片段可能是一种有价值的测定方法,以确定对调节卵泡发生机制的影响。同样,在不同营养方案下发育的动物可能已经改变了卵巢微环境,这可能促进或抑制影响雌性生殖成熟的卵泡发生。因此,我们在当前手稿中的目标是报告牛皮层培养技术,并确定在13个月大时收集的对照或阶梯饮食的小母牛体外培养牛皮质后卵巢微环境是否存在差异,如前所述16。

因此,我们的下一步是确定这些小母牛的卵巢微环境,这些小母牛是用不同的营养饮食开发的。我们评估了用阶梯或对照饮食喂养的小母牛的卵巢皮层。对照小母牛的维持日粮为97.9克/千克0.75, 持续84天。阶梯式饮食在8个月时开始,包括67.4 g / kg0.75 的限制性喂养饮食,持续84天。在前84天之后,虽然对照小母牛继续接受97.9克/千克0.75,但阶梯式牛小母牛被给予118.9克/千克0.75, 再过68天,之后它们在16 个月大时被卵巢切除,以研究培养前后卵泡期和形态的变化。我们还测定了分泌到皮质培养基中的类固醇,类固醇代谢物,趋化因子和细胞因子的差异。测量类固醇和其他代谢物以确定体内和/或体外进行的治疗是否对组织活力和生产力有任何直接影响。培养前后卵巢微环境的变化提供了培养前内分泌环境和卵泡发生的快照,以及培养期间培养或治疗如何影响卵泡进展或停滞。

在美国肉类动物研究中心(USMARC)根据16个月大的对照和阶梯式小母牛的IACUC程序进行卵巢切除术后收集卵巢,用0.1%抗生素洗涤无菌磷酸盐水(PBS)清洗以去除血液和其他污染物,修剪多余的组织,并运送到内布拉斯加大学林肯分校(UNL)生殖生理学实验室UNL,温度为37°C23.在UNL,卵巢皮层块被切成小的方块(〜0.5-1mm3;图 1)并培养7天(图2)。在培养前后对皮层培养载玻片进行组织学,以确定卵泡阶段16,24(图3图4)和可能表明纤维化的细胞外基质蛋白(Picro-Sirus Red,PSR;图 5)。这允许确定体内营养方案对卵泡阶段的影响,并允许比较卵泡阶段和卵泡进展的7天卵巢皮层。在整个培养过程中,每天收集和更换培养基(每天收集约70%的培养基;250μL/孔),以便可以评估每日激素/细胞因子/趋化因子或在几天内汇集以获得平均浓度。类固醇如雄烯二酮(A4)和雌激素(E2)可以在3天内汇集,并通过放射免疫测定(RIA;图 6)每只动物汇集4天,并通过高效液相色谱 – 质谱法(HPLC-MS)24,25(表1)进行测定。使用细胞因子阵列来评估卵巢皮质培养基26中的细胞因子和趋化因子浓度(表2)。进行实时聚合酶链反应(RT-PCR)测定板以确定特定信号转导途径的基因表达,如前所述16。所有类固醇,细胞因子,卵泡阶段和组织学标志物都提供了卵巢微环境的快照以及有关该微环境促进”正常”或”异常”卵泡发生的能力的线索。

Protocol

卵巢是从美国肉类动物研究中心16获得的。如前所述,所有程序均由美国肉类动物研究中心(USMARC)动物护理和使用委员会根据农业研究和教学中农业动物的护理和使用指南批准。卵巢被带到内布拉斯加大学林肯生殖实验室,在那里它们被加工和培养。 1. 所需培养基的制备 韦茅斯 MB 752/1 中型 在1L组织培养瓶中?…

Representative Results

这种牛皮质培养程序可用于从卵巢的小块中确定各种激素,细胞因子和组织学数据。染色,如苏木精和曙红(H&E),可用于通过卵泡分期16,23,31确定卵巢形态(图3)。简而言之,卵泡被归类为原始卵泡,这是一种卵母细胞,周围有一层鳞状的前粒细胞(0);过渡卵泡或早期原发卵泡,这是一种卵母细胞…

Discussion

如本手稿所述,体外卵巢皮层培养的好处是卵泡在正常化环境中发育,卵泡周围有相邻的基质。体细胞和卵母细胞保持完整,并且作为体内模型存在适当的细胞间通讯。我们的实验室发现,7天的培养系统为卵巢皮层的治疗提供了具有代表性的卵泡发生和类固醇生成数据。其他卵巢组织培养方案的培养期相对较短,为1-6天7、32较长的培养期为10-15天<sup …

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究得到了美国国家食品和农业研究所2013-67015-20965对ASC的支持,内布拉斯加大学食品促进健康竞争补助金给ASC。美国农业部Hatch授予NEB26-202 / W3112加入ASC #1011127,Hatch-NEB ANHL加入#1002234 ASC。定量生命科学倡议暑期博士后学者支持 – CMS暑期资助的COVID-19奖。

作者要向美国肉类动物研究中心,Clay Center,NE的Robert Cushman博士表示感谢,感谢他在之前的出版物中提供了卵巢,然后在目前的论文中将其用作验证该技术的概念证明。

Materials

#11 Scapel Blade Swann-Morton  303 Scaple Blade
#21 Scapel Blade Swann-Morton  307 Scaple Blade
500mL Bottle Top Filter Corning 430514 Bottle Top Filter 0.22 µm pore for filtering medium
AbsoluteIDQ Sterol17 Assay Biocrates Sterol17 Kit Samples are sent off to Biocrates and steroid panels are run and results are returned 
Androstenedione Double Antibody RIA Kit MPBio 7109202 RIA to determine androstenedione from culture medium
Belgium A4 Assay Kit  DIA Source  KIP0451 RIA to determine androstenedione from culture medium
Bovine Cytokine Array Q3 RayBiotech QAB-CYT-3-1 Cytokine kit to determine cytokines from culture medium
cellSens Software Standard 1.3 Olympus 7790 Imaging Software
Insulin-Transferrin-Selenium-X Gibco ThermoFisher Scientific 5150056 Addative to the culture medium
Leibovitz's L-15 Medium Gibco ThermoFisher Scientific 4130039 Used for tissue washing on clean bench, and in the biosafety cabniet 
Microscope  Olympus SZX16 Disection microscope used for imaging tissue culture pieces 
Microscope Camera  Olympus DP71 Microscope cameraused for imaging tissue culture pieces 
Millicell Cell Culture Inserts 0.4µm, 12,mm Diameter Millipore Sigma PICM01250 Inserts that allow the tissue to rest against the medium without being submerged in it
Multiwell 24 well plate Falcon 353047 Plate used to hold meduim, inserts, and tissues
Petri dish 60 x 15 mm Falcon 351007 Petri dish used for washing steps prior to culture
Phosphate-Buffered Saline (PBS 1X) Corning 21-040-CV Used for tissue washing
SAS Version 9.3 SAS Institute  9.3 TS1M2 Statistical analysis software 
Thomas Stadie-Riggs Tissue Slicer Thomas Scientific 6727C10 Tissue slicer for preperation of thin uniform sections of fresh tissue
Waymouth MB 752/1 Medium Sigma-Aldrich W1625 Medium used for tissue cultures

Referências

  1. Braw-Tal, R., Yossefi, S. Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. Journal of Reproduction and Fertility. 109, 165-171 (1997).
  2. Nilsson anEdson, M. A., Nagaraja, A. K., Matzuk, M. M. The mammalian ovary from genesis to revelation. Endocrine Reviews. 30 (6), 624-712 (2009).
  3. Fortune, J. E., Cushman, R. A., Wahl, C. M., Kito, S. The primordial to primary follicle transition. Molecular and Cellular Endocrinology. 163, 53-60 (2000).
  4. Ireland, J. J. Control of follicular growth and development. Journal of Reproduction and Fertility. 34, 39-54 (1987).
  5. Higuchi, C. M., Maeda, Y., Horiuchi, T., Yamazaki, Y. A simplified method for three-dimensional (3-D) ovarian tissue culture yielding oocytes competent to produce full-term offspring in mice. PLoS One. 10 (11), e0143114 (2015).
  6. Ramezani, M., Salehnia, M., Jafarabadi, M. Short term culture of vitrified human ovarian cortical tissue to assess the cryopreservation outcome: molecular and morphological analysis. Journal of Reproduction & Infertility. 18 (1), 162-171 (2017).
  7. McLaughlin, M., Telfer, E. Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction. 139 (6), 971-978 (2010).
  8. Stefansdottir, A., Fowler, P. A., Powles-Glover, N., Anderson, R. A., Spears, N. Use of ovary culture techniques in reproductive toxicology. Reproductive Toxicology. 49, 117-135 (2014).
  9. Bromfield, J. J., Sheldon, I. M. Lipopolysaccharide reduces the primordial follicle pool in the bovine ovarian cortex ex vivo and in the murine ovary in vivo. Biology of Reproduction. 88 (4), 1-9 (2013).
  10. Franks, S., Stark, J., Hardy, K. Follicle dynamics and anovulation in polycystic ovary syndrome. Humane Reproduction Update. 14 (4), 367-378 (2008).
  11. Desmeules, P., Devine, P. J. Characterizing the ovotoxicity of cyclophosphamide metabolites on cultured mouse ovaries. Toxicological Sciences. 90 (2), 500-509 (2006).
  12. Bott, R. C., McFee, R. M., Clopton, D. T., Toombs, C., Cupp, A. S. Vascular endothelial growth factor and kinase domain region receptor are involved in both seminiferous cord formation and vascular development during testis morphogenesis in the rat. Biology of Reproduction. 75, 56-67 (2006).
  13. Baltes-Breitwisch, M. M., et al. Neutralization of vascular endothelial growth factor antiangiogenic isoforms or administration of proangiogenic isoforms stimulates vascular development in the rat testis. Reproduction. 140 (2), 319-329 (2010).
  14. McFee, R. M., et al. Inhibition of vascular endothelial growth factor receptor signal transduction blocks follicle progression but does not necessarily disrupt vascular development in perinatal rat ovaries. Biology of Reproduction. 81, 966-977 (2009).
  15. Artac, R. A., et al. Neutralization of vascular endothelial growth factor antiangiogenic isoforms is more effective than treatment with proangiogenic isoforms in stimulating vascular development and follicle progression in the perinatal rat ovary. Biology of Reproduction. 81, 978-988 (2009).
  16. Abedal-Majed, M. A., et al. Vascular endothelial growth factor A isoforms modulate follicle development in peripbertal heifers independent of diet through diverse signal transduction pathways. Biology of Reproduction. 102 (3), 680-692 (2020).
  17. Wandji, S. A., Srsen, V., Voss, A. K., Eppig, J. J., Fortune, J. E. Initiation in vitro of bovine primordial follicles. Biology of Reproduction. 55, 942-948 (1996).
  18. Wandji, S. A., Srsen, V., Nathanielsz, P. W., Eppig, J. J., Fortune, J. E. Initiation of growth of baboon primordial follicles in vitro. Human Reproduction. 12 (9), 1993-2001 (1993).
  19. Yang, M. Y., Fortune, J. E. Testosterone stimulates the primary to secondary follicle transition in bovine follicles in vitro. Biology of Reproduction. 75, 924-932 (2006).
  20. Fortune, J. E., Kito, S., Wandji, S. A., Srsen, V. Activation of bovine and baboon primordial follicles in vitro. Theriogenology. 49, 441-449 (1998).
  21. Yang, M. Y., Fortune, J. E. Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Molecular Reproduction and Development. 74, 1095-1104 (2007).
  22. Barberino, R. S., Silva, J. R. V., Figueiredo, J. R., Matos, M. H. T. Transport of domestic and wild animal ovaries: a review of the effects of medium, temperature, and periods of storage on follicular viability. Biopreservation and Biobanking. 17 (1), 84-90 (2019).
  23. Summers, A. F., et al. Altered theca and cumulus oocyte complex gene expression, follicular arrest and reduced fertility in cows with dominant follicle follicular fluid androgen excess. PLoS One. 9 (10), e110683 (2014).
  24. Koal, T., Schmiederer, D., Pham-Tuan, H., Rohring, C., Rauh, M. Standardized LC-MS/MS based steroid hormone profile analysis. The Journal of Steroid Biochemistry and Molecular Biology. 129, 129-138 (2012).
  25. Poole, R. K., Brown, A. R., Pore, M. H., Pickworth, C. L., Poole, D. H. Effects of endophyte-infected tall fescue seed and protein supplementation on stocker steers: II. Adaptive and innate immune function. Journal of Animal Science. 97 (10), 4160-4170 (2019).
  26. Laronda, M., et al. Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. Journal of Assisted Reproduction and Genetics. 31 (8), 1013-1028 (2014).
  27. Silber, S. J., et al. A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Human Reproduction. 23 (7), 1531-1537 (2008).
  28. Wiedemann, C., Zahmel, J., Jewgenow, K. Short-term culture of ovarian cortex pieces to assess the cryopreservation outcome in wild fields for genome conservation. BMC Veterinary Research. 9 (37), (2013).
  29. Baufeld, A., Vanselow, J. Increasing cell plating density mimics an early post-LH stage in cultured bovine granulosa cells. Cell and Tissue Research. 354 (3), 869-880 (2013).
  30. Shimizu, T., Miyamoto, A. Progesterone induces the expression of vascular endothelial growth factor (VEGF) 120 and Flk-1, its receptor, in bovine granulosa cells. Animal Reproduction Science. 102 (3-4), 228-237 (2007).
  31. Tepekoy, F., Akkoyunlu, G. The effect of FSH and activin A on Akt and MAPK1/3 phosphorylation in cultured bovine ovarian cortical strips. Journal of Ovarian Research. 9 (13), 1-9 (2016).
  32. Beck, K., Singh, J., Arshud Dar, M., Anzar, M. Short-term culture of adult bovine ovarian tissues: chorioallantoic membrane (CAM) vs. traditional in vitro culture systems. Reproductive Biology and Endocrinology. 16 (1), 21 (2018).
  33. Eppig, J. J. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 122 (6), 829-838 (2001).
  34. Paczkowski, M., Silva, E., Schoolcraft, W. B., Krisher, R. L. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biology of Reproduction. 88 (5), 1-11 (2013).
  35. Raffel, N., et al. Is ovarian tissue transport at supra-zero temperatures compared to body temperature optimal for follicle survival?. In Vivo. 34 (2), 533-541 (2020).
  36. Duncan, F., et al. Ovarian tissue transport to expand access to fertility preservation: from animals to clinical practice. Reproduction (Cambridge, England). 152 (6), R201-R210 (2016).
  37. Liebenthron, J., et al. Overnight ovarian tissue transportation for centralized cryobanking: a feasible option. Reproductive BioMedicine Online. 38 (5), 740-749 (2019).
  38. Mohammed, B. T., Donadeu, F. X. Bovine granulosa cell culture. Epithelial Cell Culture: Methods and Protocols. , 79-87 (2018).
  39. Langbeen, A., et al. Effects of neutral red assisted viability assessment on the cryotolerance of isolated bovine preantral follicles. Journal of Assisted Reproduction Genetics. 31, 1727-1736 (2014).
  40. Higuchi, C. M., Maeda, Y., Horiuchi, T., Yamazaki, Y. A simplified method for three-dimensional (3-D) ovarian tissue culture yielding oocytes competent to produce full-term offspring in mice. PLoS One. 10 (11), e0143114 (2015).
  41. Yang, M. Y., Fortune, J. E. Changes in the transcriptome of bovine ovarian cortex during follicle activation in vitro. Physiological Genomics. 47, 600-611 (2015).
check_url/pt/61668?article_type=t

Play Video

Citar este artigo
Sutton, C. M., Springman, S. A., Abedal-Majed, M. A., Cupp, A. S. Bovine Ovarian Cortex Tissue Culture. J. Vis. Exp. (167), e61668, doi:10.3791/61668 (2021).

View Video