Summary

操作横向主动脉收缩与可吸收的缝合获得瞬时心肌萎缩

Published: September 09, 2020
doi:

Summary

该协议提出了一个改进的方法,以获得可吸收的缝合的瞬时心肌肥大,模拟左心室肥大减少后,消除压力过载。它可能对心肌肥大先天性研究很有价值。

Abstract

基于小鼠两次横向主动脉收缩(TACs),证明心肌肥大预后(MHP)可以减轻心肌细胞肥大,减缓心力衰竭的进展。然而,对于新手来说,MHP模型通常很难建立,因为呼吸机操作的技术障碍,反复打开胸部,以及脱体引起的出血。为了促进这种模式,提高手术成功率和减少出血的发生率,我们改用可吸收的缝合线进行第一次TAC梳理,采用无呼吸机技术。使用2周的可吸收缝合,我们证明这个程序可能会导致严重的心肌萎缩在2周:手术后4周,心肌萎缩几乎完全退回到基线。使用此协议,操作员可以轻松掌握 MHP 模型,降低操作死亡率。

Introduction

缺血性先导是一种现象,诱发短暂的非致命性缺血发作和对心脏的再灌注,并有能力显著减少心肌损伤1。鉴于缺血性先决条件的明显临床意义,如限制心肌梗塞大小2和抑制心室心肌梗塞后心肌复明3,已经有很多研究来解剖机制潜在的心防作用诱导的先决条件4,5。相比之下,其他非缺血的先决条件却很少受到关注。心脏肥大可能钝化在主动脉狭窄患者进行主动脉瓣更换6。在存在病理心肌萎缩状态的地方,很少报告先决条件原理。

1991年,罗克曼等人首次建立了通过横向主动脉收缩(TAC)7导致左心室肥大的小鼠模型。通过在小鼠中两次操作TAC,我们先前已经证明心肌肥大预后(MHP)会导致心脏短暂性肥大刺激,从而使心脏在未来8月对持续的肥大压力更具抵抗力。MHP模型的特点已通过超声波生物显微镜和血动力学评估9得到验证。构建模型的要点是执行胸腔切除术三次,TAC 一周,解散一周,二级 TAC 6 周。然而,去组织可能导致出血,这使得新手难以掌握,也难以推广。此外,给小鼠进行管网也是一项技术挑战。不当的受管可能导致气管损伤、肺气管损伤,甚至导致小鼠死亡。因此,在构建MHP模型的同时,改进一些程序是必要和有价值的。

为了降低模型的难度并增加其成功率,我们切换到可吸收的缝合线为第一个TAC,并通过测量压力梯度通过回声心动图10下主动脉收缩监测模型的成功。根据我们的初步实验,在压力梯度过低的小鼠中很难诱发足够的心肌肥大,而压力梯度过高的小鼠会发展成急性心力衰竭甚至死亡。模型的理想压力梯度范围为 40–80 mmHg11。此外,这个实验没有依靠呼吸机,它可以有效地避免呼吸机相关的技术操作和伤害12。

Protocol

所有程序都是按照美国国家卫生研究院出版的《 实验室动物的护理和使用 指南》进行的(NIH出版物第85-23号,1996年修订)。C57BL/6J雄性小鼠(8~10周,20~25克)由南方医科大学动物中心提供。 1. 术前准备 用针架捏掉 25 G 针的尖端,用像支架这样的硬物将其钝化。 通过针头传递一个5+0可吸收的缝合线,然后弯曲到90°与持有人13。注:?…

Representative Results

在这项研究中,我们随机将45只小鼠分成三组,分别是假象组、丝缝组和可吸收缝合组(TAC之后D0(基线)、D14和D28上每组的数量分别为15、10和5)。手术后的D7、D14、D21和D28,收缩的峰值速度由心电图确定。我们发现,在TAC之后的第二周,收缩处的血流速度仍然大于3,000毫米/秒,即使使用可吸收的缝合线收缩主动脉拱门(图1A)。此外,可吸收缝合组收缩时的压力梯度在2周…

Discussion

在心脏非缺血预科中,仍然存在着一个大大不足的区域。根据我们以前的研究,我们改用可吸收的缝合线来改善心肌肥大预后模式。

在先前的报告中,许多调查人员使用丝绸缝合来收缩主动脉拱门8、14、15号。丝绸缝合很容易获得,经常用于手术伤口缝合,组织结块和组织固定。在此协议中,我们用?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金委员会(81770271:给Y,廖),中国国家自然科学基金联合基金(U1908205:给Y,廖)和广州市科技规划项目(201804020083:廖博士)的资助。

Materials

Absorbable suture (5-0) Shandong Kang Lida Medical Products Co., Ltd 5-0 Ligation
Animal ultrasound system VEVO2100 Visual Sonic VEVO2100 Echocardiography
Cold light illuminator Olympus ILD-2 Light
Heat pad- thermostatic surgical system (ALC-HTP-S1) SHANGHAI ALCOTT BIOTECH CO ALC-HTP-S1 Heating
Isoflurane RWD life science R510-22 Inhalant anaesthesia
Matrx VIP 3000 Isofurane Vaporizer Midmark Corporation VIP 3000 Anesthetization
Medical nylon suture (5-0) Ningbo Medical Needle Co. 5-0 Close the skin
Pentobarbital sodium salt Merck 25MG Anesthetization
Precision electronic balance Denver Instrument TB-114 Weighing sensor
Self-made spacer 25-gauge needle
Silk suture (5-0) Yangzhou Yuankang Medical Devices Co., Ltd. 5-0 Ligation
Small animal microsurgery equipment Napox MA-65 Surgical instruments
Transmission Gel Guang Gong pai 250ML Echocardiography
Veet hair removal cream Reckitt Benchiser RQ/B 33 Type 2 Remove hair of mice
Vertical automatic electrothermal pressure steam sterilizer Hefei Huatai Medical Equipment Co. LX-B50L Auto clean the surgical instruments

Referências

  1. Murry, C. E., Jennings, R. B., Reimer, K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 74 (5), 1124-1136 (1986).
  2. Ban, K., et al. Phosphatidylinositol 3-kinase gamma is a critical mediator of myocardial ischemic and adenosine-mediated preconditioning. Circulation Research. 103 (6), 643-653 (2008).
  3. Wu, Z. K., Iivainen, T., Pehkonen, E., Laurikka, J., Tarkka, M. R. Ischemic preconditioning suppresses ventricular tachyarrhythmias after myocardial revascularization. Circulation. 106 (24), 3091-3096 (2002).
  4. Hausenloy, D. J., Yellon, D. M. Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis. 204 (2), 334-341 (2009).
  5. Heusch, G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circulation Research. 116 (4), 674-699 (2015).
  6. Lund, O., Emmertsen, K., Dorup, I., Jensen, F. T., Flo, C. Regression of left ventricular hypertrophy during 10 years after valve replacement for aortic stenosis is related to the preoperative risk profile. European Heart Journal. 24 (15), 1437-1446 (2003).
  7. Rockman, H. A., et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proceedings of the National Academy of Sciiences of the United States of America. 88 (18), 8277-8281 (1991).
  8. Wei, X., et al. Myocardial hypertrophic preconditioning attenuates cardiomyocyte hypertrophy and slows progression to heart failure through upregulation of S100A8/A9. Circulation. 131 (17), 1506-1517 (2015).
  9. Huang, J., et al. Ultrasound biomicroscopy validation of a murine model of cardiac hypertrophic preconditioning: comparison with a hemodynamic assessment. American Journal of Physiology. Heart and Circulatory Physiology. 313 (1), 138-148 (2017).
  10. Oka, T., et al. Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circulation Research. 98 (6), 837-845 (2006).
  11. Li, L., et al. Assessment of cardiac morphological and functional changes in mouse model of transverse aortic constriction by echocardiographic imaging. Journal of Visualized Experiments. (112), e54101 (2016).
  12. Veldhuizen, R. A., Slutsky, A. S., Joseph, M., McCaig, L. Effects of mechanical ventilation of isolated mouse lungs on surfactant and inflammatory cytokines. The European Respiratory Journal. 17 (3), 488-494 (2001).
  13. Wang, Q., et al. Induction of right ventricular failure by pulmonary artery constriction and evaluation of right ventricular function in mice. Journal of Visualized Experiments. (147), e59431 (2019).
  14. Eichhorn, L., et al. A closed-chest model to induce transverse aortic constriction in mice. Journal of Visualized Experiments. (134), e57397 (2018).
  15. Tavakoli, R., Nemska, S., Jamshidi, P., Gassmann, M., Frossard, N. Technique of minimally invasive transverse aortic constriction in mice for induction of left ventricular hypertrophy. Journal of Visualized Experiments. (127), e56231 (2017).
check_url/pt/61686?article_type=t

Play Video

Citar este artigo
Lao, Y., Zheng, C., Zhu, H., Lin, H., Huang, X., Liao, Y. Operating Transverse Aortic Constriction with Absorbable Suture to Obtain Transient Myocardial Hypertrophy. J. Vis. Exp. (163), e61686, doi:10.3791/61686 (2020).

View Video