Summary

Obtaining Quality Extended Field-of-View Ultrasound Images of Skeletal Muscle to Measure Muscle Fascicle Length

Published: December 14, 2020
doi:

Summary

This study describes how to obtain high quality musculoskeletal images using the extended field-of-view ultrasound (EFOV-US) method for the purpose of making muscle fascicle length measures. We apply this method to muscles with fascicles that extend past the field-of-view of common traditional ultrasound (T-US) probes.

Abstract

Muscle fascicle length, which is commonly measured in vivo using traditional ultrasound, is an important parameter defining a muscle’s force generating capacity. However, over 90% of all upper limb muscles and 85% of all lower limb muscles have optimal fascicle lengths longer than the field-of-view of common traditional ultrasound (T-US) probes. A newer, less frequently adopted method called extended field-of-view ultrasound (EFOV-US) can enable direct measurement of fascicles longer than the field-of-view of a single T-US image. This method, which automatically fits together a sequence of T-US images from a dynamic scan, has been demonstrated to be valid and reliable for obtaining muscle fascicle lengths in vivo. Despite the numerous skeletal muscles with long fascicles and the validity of the EFOV-US method for making measurements of such fascicles, few published studies have utilized this method. In this study, we demonstrate both how to implement the EFOV-US method to obtain high quality musculoskeletal images and how to quantify fascicle lengths from those images. We expect that this demonstration will encourage the use of the EFOV-US method to increase the pool of muscles, both in healthy and impaired populations, for which we have in vivo muscle fascicle length data.

Introduction

Fascicle length is an important parameter of skeletal muscle architecture, which overall is indicative of a muscle’s ability to produce force1,2. Specifically, a muscle’s fascicle length provides insight into the absolute range of lengths over which a muscle can generate active force3,4. For example, given two muscles with identical values for all isometric force-generating parameters (i.e., average sarcomere length, pennation angle, physiological cross sectional area, contraction state, etc.) except for fascicle length, the muscle with the longer fascicles would produce its peak force at a longer length and would produce force over a wider range of lengths than the muscle with shorter fascicles3. Quantification of muscle fascicle length is important for understanding both healthy muscle function and changes in a muscle’s force-generating capacity, which can occur as a result of altered muscle use (e.g., immobilization5,6, exercise intervention7,8,9, high heel wearing10) or a change in the muscle’s environment (e.g., tendon transfer surgery11, limb distraction12). Measurements of muscle fascicle length were originally obtained through ex vivo cadaveric experiments that allow for direct measurement of dissected fascicles13,14,15,16. The valuable information provided by these ex vivo experiments led to an interest in implementing in vivo methods17,18,19 to address questions that could not be answered in cadavers; in vivo methods allow for quantification of muscle parameters in a native state as well as at different joint postures, different muscle contraction states, different loading or unloading states, and across populations with differing conditions (i.e. healthy/injured, young/old, etc.). Most frequently, ultrasound is the method employed to obtain in vivo muscle fascicle lengths18,19,20; it is quicker, less expensive, and easier to implement than other imaging techniques, such as diffusion tensor imaging (DTI)18,21.

Extended field-of-view ultrasound (EFOV-US) has been demonstrated to be a valid and reliable method for measuring muscle fascicle length in vivo. While commonly implemented, traditional ultrasound (T-US) has a field-of-view which is limited by the ultrasound transducer’s array length (typically between 4 and 6 cm, although there are probes that extend to 10 cm10)18,20. To overcome this limitation, Weng et al. developed an EFOV-US technology that automatically acquires a composite, two-dimensional “panoramic” image (up to 60 cm long) from a dynamic, extended distance scan22. The image is created by fitting together, in real-time, a sequence of traditional, B-mode ultrasound images as the transducer dynamically scans the object of interest. Because sequential T-US images have large overlapping regions, the small differences from one image to the next can be used to calculate the probe motion without the use of external motion sensors. Once the probe motion between two consecutive images is calculated, the “current” image is merged successively with the preceding images. The EFOV-US method allows direct measurement of long, curved muscle fascicles and has been demonstrated to be reliable across muscles, trials, and sonographers23,24,25 and valid for both flat and curved surfaces23,26.

Implementing ultrasound to measure muscle fascicle length in vivo is not trivial. Unlike other imaging techniques that involve more automated protocols (i.e., MRI, CT), ultrasound is dependent on sonographer skill and anatomical knowledge27,28. There is concern that probe misalignment with the fascicle plane may cause substantial error in fascicle measures. One study demonstrates little difference (on average < 3 mm) in measures of fascicle length taken using ultrasound and DTI MRI but also shows that measurement precision is low (standard deviation of difference ~12 mm)29. Still, it has been shown that a novice sonographer, with practice and guidance from an experienced sonographer, can obtain valid meaures using EFOV-US23. Thus, efforts should be made to demonstrate appropriate protocols to reduce human error and improve accuracy of measurements obtained using EFOV-US. Ultimately, developing and sharing appropriate protocols may expand the number of experimenters and laboratories that can reproduce fascicle length data from the literature or obtain novel data in muscles which have not yet been studied in vivo.

In this protocol, we demonstrate how to implement the EFOV-US method to obtain high quality musculoskeletal images that can be used to quantify muscle fascicle length. Specifically, we address (a) collecting EFOV-US images of a single upper limb and a single lower limb muscle (b) determining, in real-time, the “quality” of the EFOV-US image, and (c) quantifying muscle architecture parameters offline. We provide this detailed guide to encourage the adoption of the EFOV-US method for obtaining muscle fascicle length data in muscles that have gone unstudied in vivo due to their long fascicles.

Protocol

Northwestern University’s Institutional Review Board (IRB) approved the procedures of this study. All participants enrolled in this work gave informed consent prior to beginning the protocol detailed below. NOTE: The specific ultrasound system used in this study had EFOV-US capabilities and was adopted because we were able to review details about and validity assessments for the algorithm in the scientific literature22,26; multiple other systems with …

Representative Results

Extended field-of-view ultrasound (EFOV-US) was implemented to obtain images from the long head of the biceps brachii and the tibialis anterior in 4 healthy volunteers (Table 1). Figure 1 shows what EFOV-US images of both muscles imaged in this representative imaging session and highlights important aspects of each image such as muscle aponeurosis, central tendon, fascicle path, etc. After the imaging session was over, 3 qualitatively “good” images (<strong class…

Discussion

Critical steps in the protocol.

There are a few critical components to obtaining quality EFOV-US images that yield valid and reliable fascicle length measures. First, as indicated in method 1.1.2 it is essential that the sonographer take time to become familiar with the anatomy of the muscle being imaged as well as surrounding muscles, bones, and other soft tissue structures. This will improve the sonographer’s ability to image the correct muscle and determine if multipl…

Declarações

The authors have nothing to disclose.

Acknowledgements

We would like to thank Vikram Darbhe and Patrick Franks for their experimental guidance. This work is supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1324585 as well as NIH R01D084009 and F31AR076920. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or NIH.

Materials

14L5 linear transducers Siemens 10789396
Acuson S2000 Ultrasound System Siemens 10032746
Adjustable chair (Biodex System) Biodex Medical Systems System Pro 4
Skin Marker Medium Tip SportSafe n/a Multi-color 4 Pack recommended
Ultrasound Gel – Standard 8 Ounce Non-Sterile Fragrance Free Glacial Tint MediChoice, Owens &Minor M500812

Referências

  1. Gans, C., Bock, W. J. The functional significance of muscle architecture: a theoretical analysis. Advances in Anatomy, Embryology and Cell Biology. 38, 115-142 (1965).
  2. Gans, C. Fiber architecture and muscle function. Exercise and Sports Sciences Reviews. 10, 160-207 (1982).
  3. Lieber, R. L., Fridén, J. Functional and clinical significance of skeletal muscle architecture. Muscle & Nerve. 23 (11), 1647-1666 (2000).
  4. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering. 17 (4), 359-411 (1989).
  5. Williams, P. E., Goldspink, G. The effect of immobilization on the longitudinal growth of striated muscle fibres. Journal of Anatomy. 116 (1), 45 (1973).
  6. Williams, P. E., Goldspink, G. Changes in sarcomere length and physiological properties in immobilized muscle. Journal of Anatomy. 127 (3), 459-468 (1978).
  7. Blazevich, A. J., Cannavan, D., Coleman, D. R., Horne, S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. Journal of Applied Physiology. 103 (5), 1565-1575 (2007).
  8. Seymore, K. D., Domire, Z. J., DeVita, P., Rider, P. M., Kulas, A. S. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. European Journal of Applied Physiology. 117 (5), 943-953 (2017).
  9. Franchi, M. V., et al. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiologica. 210 (3), 642-654 (2014).
  10. Csapo, R., Maganaris, C. N., Seynnes, O. R., Narici, M. V. On muscle, tendon and high heels. The Journal of Experimental Biology. 213 (15), 2582-2588 (2010).
  11. Takahashi, M., Ward, S. R., Marchuk, L. L., Frank, C. B., Lieber, R. L. Asynchronous muscle and tendon adaptation after surgical tensioning procedures. Journal of Bone and Joint Surgery. 92 (3), 664-674 (2010).
  12. Boakes, J. L., Foran, J., Ward, S. R., Lieber, R. L. Case Report: Muscle Adaptation by Serial Sarcomere Addition 1 Year after Femoral Lengthening. Clinical Orthopaedics and Related Research. 456, 250-253 (2007).
  13. Cutts, A., Alexander, R. M., Ker, R. F. Ratios of cross-sectional areas of muscles and their tendons in a healthy human forearm. Journal of Anatomy. 176, 133-137 (1991).
  14. Lieber, R. L., Friden, J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 23, 1647-1666 (2000).
  15. Lieber, R. L., Fazeli, B. M., Botte, M. J. Architecture of Selected Wrist Flexor and Extensor Muscles. Journal of Hand Surgery-American. 15 (2), 244-250 (1990).
  16. Brand, P. W., Beach, R. B., Thompson, D. E. Relative tension and potential excursion of muscles in the forearm and hand. Journal of Hand Surgery. 6 (3), (1981).
  17. Fukunaga, T., Kawakami, Y., Kuno, S., Funato, K., Fukashiro, S. Muscle architecture and function in humans. Journal of Biomechanics. 30 (5), 457-463 (1997).
  18. Kwah, L. K., Pinto, R. Z., Diong, J., Herbert, R. D. Reliability and validity of ultrasound measurements of muscle fascicle length and pennation in humans: a systematic review. Journal of Applied Physiology. 114, 761-769 (2013).
  19. Lieber, R. L., Ward, S. R. Skeletal muscle design to meet functional demands. Philosophical Transactions of the Royal Society B: Biological Sciences. 366 (1570), 1466-1476 (2011).
  20. Franchi, M. V., et al. Muscle architecture assessment: strengths, shortcomings and new frontiers of in vivo imaging techniques. Ultrasound in Medicine & Biology. 44 (12), 2492-2504 (2018).
  21. Cronin, N. J., Lichtwark, G. The use of ultrasound to study muscle-tendon function in human posture and locomotion. Gait & posture. 37 (3), 305-312 (2013).
  22. Weng, L., et al. US extended-field-of-view imaging technology. Radiology. 203 (3), 877-880 (1997).
  23. Adkins, A. N., Franks, P. F., Murray, W. M. Demonstration of extended field-of-view ultrasound’s potential to increase the pool of muscles for which in vivo fascicle length is measurable. Journal of Biomechanics. 63, 179-185 (2017).
  24. Noorkoiv, M., Stavnsbo, A., Aagaard, P., Blazevich, A. J. In vivo assessment of muscle fascicle length by extended field-of-view ultrasonography. Journal of Applied Physiology. , (2010).
  25. Nelson, C. M., Dewald, J. P. A., Murray, W. M. In vivo measurements of biceps brachii and triceps brachii fascicle lengths using extended field-of-view ultrasound. Journal of Biomechanics. 49, 1948-1952 (2016).
  26. Fornage, B. D., Atkinson, E. N., Nock, L. F., Jones, P. H. US with extended field of view: Phantom-tested accuracy of distance measurements. Radiology. 214, 579-584 (2000).
  27. Bénard, M. R., Becher, J. G., Harlaar, J., Huijing, P. A., Jaspers, R. T. Anatomical information is needed in ultrasound imaging of muscle to avoid potentially substantial errors in measurement of muscle geometry. Muscle & Nerve. 39 (5), 652-665 (2009).
  28. Pinto, A., et al. Sources of error in emergency ultrasonography. Critical Ultrasound Journal. 5 (1), 1 (2013).
  29. Bolsterlee, B., Veeger, H. E. J., van der Helm, F. C. T., Gandevia, S. C., Herbert, R. D. Comparison of measurements of medial gastrocnemius architectural parameters from ultrasound and diffusion tensor images. Journal of Biomechanics. 48 (6), 1133-1140 (2015).
  30. VanHooren, B., Teratsias, P., Hodson-Tole, E. F. Ultrasound imaging to assess skeletal muscle architecture during movements: a systematic review of methods, reliability, and challenges. Journal of Applied Physiology. 128 (4), 978-999 (2020).
  31. Pimenta, R., Blazavich, A. J., Frietas, S. R. Biceps Femoris Long-Head Architecture Assessed Using Different Sonographic Techniques. Medicine & Science in Sports & Exercise. 50 (12), 2584-2594 (2018).
  32. Adkins, A. N., Franks, P. W., Murray, W. M. Demonstration of extended field-of-view ultrasound’s potential to increase the pool of muscles for which in vivo fascicle length is measurable. Journal of Biomechanics. 63, 179-185 (2017).
  33. Norkin, C. C., White, J. D. . Measurement Of Joint Motion: A Guide To Goniometry. 5th edn. , (2016).
  34. Wu, G., et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. Journal of Biomechanics. 35 (4), 543-548 (2002).
  35. Wu, G., et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand. Journal of Biomechanics. 38 (5), 981-992 (2005).
  36. Franchi, M. V., Fitze, D. P., Raiteri, B. J., Hahn, D., Spörri, J. Ultrasound-derived biceps femoris long-head fascicle length: extrapolation pitfalls. Medicine and Science in Sports and Exercise. 52 (1), 233-243 (2020).
  37. Freitas, S. R., Marmeleira, J., Valamatos, M. J., Blazevich, A., Mil-Homens, P. Ultrasonographic Measurement of the Biceps Femoris Long-Head Muscle Architecture. Journal of Ultrasound in Medicine. 37 (4), 977-986 (2018).
  38. Nelson, C. M., Murray, W. M., Dewald, J. P. A. Motor Impairment-Related Alterations in Biceps and Triceps Brachii Fascicle Lengths in Chronic Hemiparetic Stroke. Neurorehabilitation and Neural Repair. 32 (9), 799-809 (2018).
  39. Alonso-Fernandez, D., Docampo-Blanco, P., Martinez-Fernandez, J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scandinavian Journal of Medicine & Science in Sports. 28 (1), 88-94 (2018).
  40. Herbert, R. D., et al. In vivo passive mechanical behaviour of muscle fascicles and tendons in human gastrocnemius muscle-tendon units. The Journal of Physiology. 589 (21), 5257-5267 (2011).
  41. Jakubowski, K. L., Terman, A., Santana, R. V. C., Lee, S. S. M. Passive material properties of stroke-impaired plantarflexor and dorsiflexor muscles. Clinical Biomechanics. 49, 48-55 (2017).
  42. Ward, S. R., Eng, C. M., Smallwood, L. H., Lieber, R. L. Are Current Measurements of Lower Extremity Muscle Architecture Accurate. Clinical Orthopaedics and Related Research. 467 (4), 1074-1082 (2009).
  43. Pillen, S., van Alfen, N. Skeletal muscle ultrasound. Neurological Research. 33 (10), 1016-1024 (2011).
  44. Scott, J. M., et al. Panoramic ultrasound: a novel and valid tool for monitoring change in muscle mass. Journal of Cachexia, Sarcopenia and Muscle. 8 (3), 475-481 (2017).
  45. Silbernagel, K. G., Shelley, K., Powell, S., Varrecchia, S. Extended field of view ultrasound imaging to evaluate Achilles tendon length and thickness: a reliability and validity study. Muscles, Ligaments and Tendons Journal. 6 (1), 104 (2016).
  46. Lichtwark, G. A., Bougoulias, K., Wilson, A. M. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. Journal of Biomechanics. 40 (1), 157-164 (2007).
  47. Farris, D. J., Sawicki, G. S. Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait. Proceedings of the National Academy of Sciences. 109 (3), 977-982 (2012).
  48. Bolsterlee, B., Gandevia, S. C., Herbert, R. D. Effect of Transducer Orientation on Errors in Ultrasound Image-Based Measurements of Human Medial Gastrocnemius Muscle Fascicle Length and Pennation. PLoS ONE. 11 (6), (2016).
  49. Adkins, A. N., Dewald, J. P. A., Garmirian, L., Nelson, C. M., et al. Serial sarcomere number is substantially decreased within the paretic biceps brachii in chronic hemiparetic stroke. bioRxiv. , (2020).
  50. Pang, B. S., Ying, M. Sonographic measurement of Achilles tendons in asymptomatic subjects. Journal of Ultrasound in Medicine. 25 (10), 1291-1296 (2006).
  51. Ryan, E. D., et al. Test-retest reliability and the minimal detectable change for achilles tendon length: a panoramic ultrasound assessment. Ultrasound in Medicine & Biology. 39 (12), 2488-2491 (2013).
  52. Noorkoiv, M., Nosaka, K., Blazevich, A. J. Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. European Journal of Applied Physiology. 109 (4), 631-639 (2010).
  53. Franchi, M. V., Fitze, D. P., Hanimann, J., Sarto, F., Spörri, J. Panoramic ultrasound vs. MRI for the assessment of hamstrings cross-sectional area and volume in a large athletic cohort. Scientific Reports. 10 (1), 14144 (2020).
  54. Yerli, H., Eksioglu, S. Y. Extended Field-of-View Sonography: Evaluation of the Superficial Lesions. Canadian Association of Radiologists Journal. 60 (1), 35-39 (2009).
  55. Kim, S. H., Choi, B. I., Kim, K. W., Lee, K. H., Han, J. K. Extended Field-of-View Sonography. Journal of Ultrasound in Medicine. 22 (4), 385-394 (2003).
check_url/pt/61765?article_type=t

Play Video

Citar este artigo
Adkins, A. N., Murray, W. M. Obtaining Quality Extended Field-of-View Ultrasound Images of Skeletal Muscle to Measure Muscle Fascicle Length. J. Vis. Exp. (166), e61765, doi:10.3791/61765 (2020).

View Video