Summary

通过视运动反应进行视觉功能的行为评估,通过Y迷宫对糖尿病大鼠的认知功能进行行为评估

Published: October 23, 2020
doi:

Summary

糖尿病导致的眼睛和大脑的神经变性可以通过对啮齿动物进行的行为测试来观察。Y迷宫(空间认知的量度)和光运动反应(视觉功能的度量)都提供了对潜在诊断和治疗的洞察。

Abstract

视运动反应和Y迷宫分别是用于评估视觉和认知功能的行为测试。视神经膜反应是一种有价值的工具,用于跟踪许多视网膜疾病模型(包括糖尿病视网膜病变)中空间频率(SF)和对比度敏感性(CS)阈值随时间的变化。同样,Y迷宫可用于监测影响中枢神经系统的许多疾病模型中的空间认知(通过自发交替测量)和探索性行为(由许多条目测量)。光运动反应和Y迷宫的优点包括灵敏度,测试速度,先天反应的使用(不需要训练),以及在清醒(非麻醉)动物身上进行的能力。在这里,描述了光运动反应和Y迷宫的协议,以及它们在I型和II型糖尿病模型中显示的使用示例。方法包括准备啮齿动物和设备,光运动响应和Y迷宫的性能以及测试后数据分析。

Introduction

超过 4.63 亿人患有糖尿病,使其成为全球最大的疾病流行之一1。糖尿病引起的严重并发症之一是糖尿病视网膜病变(DR),这是美国工作年龄成年人失明的主要原因2。在未来 30 年内,面临 DR 风险的人口比例预计将翻一番,因此在早期阶段找到诊断 DR 的新方法以预防和缓解 DR 发展至关重要3。DR通常被认为是一种血管疾病456。然而,现在有证据表明在血管病理学之前视网膜中存在神经元功能障碍和细胞凋亡,DR被定义为具有神经元和血管成分456789。诊断DR的一种方法是检查视网膜中的神经异常,视网膜组织可能比其他神经组织更容易受到糖尿病的氧化应激和代谢应变的影响10

认知和运动功能的下降也发生在糖尿病中,并且通常与视网膜变化有关。与对照组参与者相比,II型糖尿病患者的基线认知表现较差,认知能力下降程度更高11。此外,视网膜已被确定为中枢神经系统的延伸,病理可以表现在视网膜12中。临床上,视网膜与大脑之间的关系已经在阿尔茨海默氏症和其他疾病的背景下进行了研究,但糖尿病并不常见1213,141516糖尿病进展过程中大脑和视网膜的变化可以使用动物模型进行探索,包括STZ大鼠(I型糖尿病的模型,其中毒素,链脲佐菌素或STZ用于损害胰腺β细胞)和Goto-Kakizaki大鼠(II型糖尿病的多基因模型,其中动物在3周龄左右自发地发展高血糖)。在该协议中,提供了Y迷宫和视运动反应的描述,以分别评估糖尿病啮齿动物的认知和视觉变化。视运动反应 (OMR) 通过监测特征反射性头部跟踪运动来评估空间频率(类似于视敏度)和对比度灵敏度,以测量每只眼睛的视觉阈值17。空间频率是指条形的厚度或细度,对比度灵敏度是指条形和背景之间的对比度(图1E)。同时,Y迷宫测试短期空间记忆和探索功能,通过自发的交替和通过迷宫的手臂进入观察到。

这两种测试都可以在清醒的非麻醉动物中进行,并且具有利用动物先天反应的优点,这意味着它们不需要训练。两者都是相对敏感的,因为它们可以用来检测啮齿动物糖尿病进展的早期缺陷,并且是可靠的,因为它们产生的结果与其他视觉,视网膜或行为测试相关。此外,将OMR和Y迷宫与视网膜电图和光学相干断层扫描等测试结合使用,可以提供关于视网膜,结构和认知变化何时在疾病模型中相对发展的信息。这些检查可能有助于识别由糖尿病引起的神经变性。最终,这可能导致新的诊断方法,在进展的早期阶段有效地识别DR。

用于开发该协议的OMR和Y迷宫系统在 材料表中进行了描述。Prusky等人先前对OMR的研究和Maurice等人对Y迷宫的研究被用作开发该协议的起点。

Protocol

所有程序均由亚特兰大退伍军人事务机构动物护理和使用委员会批准,并符合美国国立卫生研究院关于实验室动物护理和使用的指南(NIH出版物,第 8版,2011年更新)。 1. 光运动响应 (OMR) 设置 OMR 设备(材料表中有关设备和软件的详细信息) 为啮齿动物选择适当大小的平台:小鼠,大鼠或大型/受损大鼠(图1A)。…

Representative Results

如果可以从啮齿动物获得空间频率和对比度灵敏度阈值,则OMR被认为是成功的。在这里,使用OMR评估空间频率在幼稚对照Brown-Norway和Long-Evans大鼠中得到了说明,它们都是年轻(3-6个月)和老年(9-12个月)。褐-挪威大鼠通常比长埃文斯大鼠表现出更高的基线空间频率。此外,在Long-Evans大鼠中观察到对空间频率的老化影响(图3A)。使用单因素方差分析分析数据,然后进行Holm…

Discussion

OMR和Y迷宫允许随着时间的推移对啮齿动物的视觉功能和认知功能缺陷进行非侵入性评估。在该协议中,OMR和Y迷宫被证明可以跟踪糖尿病啮齿动物模型中的视觉和认知缺陷。

协议中的关键步骤

奥姆雷

在执行OMR以评估视觉功能时要考虑的一些重要要点是使用的测试参数,实验设计和测试时间以及执行测量的研究人员的经验…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了退伍军人事务部康复研发服务职业发展奖(CDA-1,RX002111;CDA-2;RX002928)到RSA和(CDA-2,RX002342)到AJF和美国国立卫生研究院(NIH-NICHD F31 HD097918到DACT和NIH-NIEHS T32 ES012870到DACT)和NEI核心授权P30EY006360。

Materials

OptoMotry HD CerebralMechanics Inc. OMR apparatus & software
Timer Thomas Scientific 810029AR
Y-Maze apparatus San Diego Instruments 7001-043 Available specifically for rats

Referências

  1. . International Diabetes Federation Diabetes Atlas, 9th edn Available from: https://diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAfinal-web.pdf (2019)
  2. Wang, W., Lo, A. C. Y. Diabetic retinopathy: pathophysiology and treatments. International Journal of Molecular Sciences. 19 (6), (2018).
  3. Akpek, E. K., Smith, R. A. Overview of age-related ocular conditions. The American Journal of Managed Care. 19 (5), 67-75 (2013).
  4. Urano, F. Wolfram syndrome: diagnosis, management, and treatment. Current Diabetes Reports. 16 (1), 6 (2016).
  5. Adeva-Andany, M. M., Funcasta-Calderón, R., Fernández-Fernández, C., Ameneiros-Rodríguez, E., Domínguez-Montero, A. Subclinical vascular disease in patients with diabetes is associated with insulin resistance. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 13 (3), 2198-2206 (2019).
  6. Chin, J. A., Sumpio, B. E. Diabetes mellitus and peripheral vascular disease: diagnosis and management. Clinics in Podiatric Medicine and Surgery. 31 (1), 11-26 (2014).
  7. Barber, A. J., Gardner, T. W., Abcouwer, S. F. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Investigative Ophthalmology & Visual Science. 52 (2), 1156-1163 (2011).
  8. Pardue, M. T., Allen, R. S. Neuroprotective strategies for retinal disease. Progress in Retinal and Eye Research. 65, 50-76 (2018).
  9. Aung, M. H., Kim, M. K., Olson, D. E., Thule, P. M., Pardue, M. T. Early visual deficits in streptozotocin-induced diabetic long evans rats. Investigative Ophthalmology & Visual Science. 54 (2), 1370-1377 (2013).
  10. Antonetti, D. A., et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes. 55 (9), 2401-2411 (2006).
  11. Logroscino, G., Kang, J. H., Grodstein, F. Prospective study of type 2 diabetes and cognitive decline in women aged 70-81 years. BMJ. 328 (7439), 548 (2004).
  12. London, A., Benhar, I., Schwartz, M. The retina as a window to the brain-from eye research to CNS disorders. Nature Reviews Neurology. 9 (1), 44-53 (2013).
  13. Archibald, N. K., Clarke, M. P., Mosimann, U. P., Burn, D. J. The retina in Parkinson’s disease. Brain. 132 (5), 1128-1145 (2009).
  14. Sakai, R. E., Feller, D. J., Galetta, K. M., Galetta, S. L., Balcer, L. J. Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. Journal of Neuroophthalmology. 31 (4), 362-373 (2011).
  15. Wong, T. Y., et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. The Lancet. 358 (9288), 1134-1140 (2001).
  16. Marquié, M., et al. Association between retinal thickness and β-amyloid brain accumulation in individuals with subjective cognitive decline: Fundació ACE Healthy Brain Initiative. Alzheimer’s Research & Therapy. 12 (1), 37 (2020).
  17. Thomas, B. B., Seiler, M. J., Sadda, S. R., Coffey, P. J., Aramant, R. B. Optokinetic test to evaluate visual acuity of each eye independently. Journal of Neuroscience Methods. 138 (1-2), 7-13 (2004).
  18. Prusky, G. T., Alam, N. M., Beekman, S., Douglas, R. M. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Investigative Ophthalmology & Vision Science. 45 (12), 4611-4616 (2004).
  19. Maurice, T., et al. Behavioral evidence for a modulating role of σ ligands in memory processes. I. Attenuation of dizocilpine (MK-801)-induced amnesia. Brain Research. 647 (1), 44-56 (1994).
  20. Douglas, R. M., et al. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Visual Neuroscience. 22 (5), 677-684 (2005).
  21. Feola, A. J., et al. Menopause exacerbates visual dysfunction in experimental glaucoma. Experimental Eye Research. 186, 107706 (2019).
  22. Allen, R. S., et al. TrkB signalling pathway mediates the protective effects of exercise in the diabetic rat retina. European Journal of Neuroscience. 47 (10), 1254-1265 (2018).
  23. Allen, R. S., et al. Retinal deficits precede cognitive and motor deficits in a rat model of type II diabetes. Investigative Ophthalmology & Visual Science. 60 (1), 123-133 (2019).
  24. Prusky, G. T., Harker, K. T., Douglas, R. M., Whishaw, I. Q. Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behavioural Brain Research. 136 (2), 339-348 (2002).
  25. Hwang, C. K., et al. Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in retinal ganglion cells. Journal of Neuroscience. 33 (38), 14989-14997 (2013).
  26. Mui, A. M., et al. Daily visual stimulation in the critical period enhances multiple aspects of vision through BDNF-mediated pathways in the mouse retina. PLoS One. 13 (2), 0192435 (2018).
  27. Feola, A. J., et al. Menopause exacerbates visual dysfunction in experimental glaucoma. Experimental Eye Research. 186, 107706 (2019).
  28. Allen, R. S., et al. Long-term functional and structural consequences of primary blast overpressure to the eye. Journal of Neurotrauma. 35 (17), 2104-2116 (2018).
  29. Maaswinkel, H., Li, L. Spatio-temporal frequency characteristics of the optomotor response in zebrafish. Vision Research. 43 (1), 21-30 (2003).
  30. Benkner, B., Mutter, M., Ecke, G., Münch, T. A. Characterizing visual performance in mice: an objective and automated system based on the optokinetic reflex. Behavioral Neuroscience. 127 (5), 788-796 (2013).
  31. Lehmann, K., Schmidt, K. F., Löwel, S. Vision and visual plasticity in ageing mice. Restorative Neurology and Neuroscience. 30, 161-178 (2012).
  32. Leinonen, H., Tanila, H. Vision in laboratory rodents-tools to measure it and implications for behavioral research. Behavioral Brain Research. 352, 172-182 (2018).
  33. Spielmann, M., Schröger, E., Kotz, S. A., Pechmann, T., Bendixen, A. Using a staircase procedure for the objective measurement of auditory stream integration and segregation thresholds. Frontiers in Psychology. 4, 534 (2013).
  34. Shi, C., et al. Optimization of optomotor response-based visual function assessment in mice. Scientific Reports. 8 (1), 9708 (2018).
  35. You, M., Yamane, T., Tomita, H., Sugano, E., Akashi, T. A novel rat head gaze determination system based on optomotor responses. PLoS One. 12 (4), 0176633 (2017).
  36. Whyte, A. J., et al. Reward-related expectations trigger dendritic spine plasticity in the mouse ventrolateral orbitofrontal cortex. The Journal of Neuroscience. 39 (23), 4595-4605 (2019).
check_url/pt/61806?article_type=t

Play Video

Citar este artigo
Gudapati, K., Singh, A., Clarkson-Townsend, D., Phillips, S. Q., Douglass, A., Feola, A. J., Allen, R. S. Behavioral Assessment of Visual Function via Optomotor Response and Cognitive Function via Y-Maze in Diabetic Rats. J. Vis. Exp. (164), e61806, doi:10.3791/61806 (2020).

View Video