Summary

交替浸入葡萄糖中,在斑马鱼中产生长期血糖超血症

Published: May 05, 2021
doi:

Summary

此协议非侵入性地诱发斑马鱼高血糖长达 8 周。利用这一协议,可以深入研究高血糖的不利影响。

Abstract

斑马鱼(Danio rerio)是研究慢性高血糖影响的优秀模型,这是 II 型糖尿病 (T2DM) 的标志。这种替代浸入协议是一种非侵入性的、循步骤的方法,可诱导高血糖长达八周。成年斑马鱼交替接触糖(葡萄糖)和水,每次24小时。斑马鱼开始用1%的葡萄糖溶液治疗2周,然后用2%的溶液治疗2周,最后在剩下的4周内进行3%的溶液治疗。与水处理(压力)和曼尼托处理(渗透)对照相比,葡萄糖处理斑马鱼的血糖水平显著较高。经过葡萄糖处理的斑马鱼的血糖水平是对照组的3倍,这表明在4周和8周后可以达到高血糖。持续性高血糖与胶质纤维酸性蛋白 (GFAP) 增加、心网膜核因子 Kappa B (NF-kB) 水平增加、生理反应下降以及认知缺陷有关,表明此协议可用于模拟疾病并发症。

Introduction

斑马鱼(丹尼奥·雷里奥)正在迅速成为一个广泛使用的动物模型,以研究疾病和认知1。基因操纵的易受干扰和胚胎透明性在早期发育阶段,使他们成为研究人类疾病的主要候选者与已知的遗传基础。例如,斑马鱼已经被用来研究霍尔特-奥拉姆综合征,心肌病,球状细胞性肾脏疾病,肌肉萎缩症和糖尿病(DM)等疾病1。此外,斑马鱼模型是理想的,因为该物种的体积小,维护方便,和高粪便2,3。

斑马鱼胰腺在解剖学上和功能上都与哺乳动物胰腺4相似。因此,斑马鱼具有体型大、肥大和内分泌结构相似的独特特征,因此斑马鱼成为研究DM相关并发症的合适人选。在斑马鱼中,有两种实验方法用于诱导DM特有的长时间高血糖:葡萄糖的流入(建模2型)和胰岛素分泌的停止(建模1型)5、6。在实验中,为了阻止胰岛素分泌,胰腺β细胞可以通过链球菌素(STZ)或Aloxan注射进行化学破坏。STZ已成功地用于啮齿动物和斑马鱼,导致并发症与视网膜病变7,8,9,认知障碍10,和肢体再生11。然而,在斑马鱼中,β细胞在治疗后再生,导致STZ的”助推器注射”成为维持糖尿病状况所必需的或者,斑马鱼的胰腺可以去除6。这些都是高度侵入性的程序,由于多次注射,和广泛的恢复时间。

相反,高血糖可以通过接触外源性葡萄糖来非侵入性地诱发。在此协议中,鱼被淹没在高度浓缩的葡萄糖溶液中24小时5,13或连续2周14,15,16。外源性葡萄糖通过摄入和/或穿过刺,导致血糖水平升高而被跨皮吸走。由于这种非侵入性技术不直接操纵胰岛素水平,因此不能声称诱导2型DM。然而,它可以用来检查高血糖引起的并发症,这是2型DM的主要症状之一。

最近,斑马鱼突变pdx1-/-通过操纵胰腺和十二指肠家谱1基因,一种与人类2型DM的遗传原因相关的基因而开发的。利用这种突变体,研究人员已经能够复制胰腺发育中断,高血糖,并研究高血糖引起的糖尿病视网膜病变17,18。

本文描述了一种使用交替浸入协议的非侵入性高血糖诱导方法。此协议维持高血糖条件长达 8 周,并观察到随后的并发症。简言之,成年斑马鱼被放置在糖溶液中24小时,然后放入水溶液中24小时。与持续浸入外部葡萄糖溶液相反,糖和水之间的交替天模拟糖尿病中血糖的上升和下降。此外,交替葡萄糖协议还允许高血糖在较长时间内诱发,因为斑马鱼无法补偿高外部葡萄糖条件。作为原则的证明,我们提供的数据表明,使用此协议诱导的血糖过高会改变视网膜化学和生理学。

Protocol

所有程序都得到了美国大学动物护理和使用机构委员会的批准。 1. 准备解决方案罐 获得六个水箱,每个实验组两个(葡萄糖、曼尼托和水)。给两个储罐中的一个贴上”储罐”(它将容纳鱼)的标签,并给另一个”溶液罐”贴上标签(它将容纳溶液)。注:曼尼托治疗组为渗透控制,水处理组为处理/应力控制。重要的是要保持坦克,航空公司/航空石,盖子和清洁用品?…

Representative Results

使用此协议(图 1),经过 4 周和 8 周的治疗(图 2A),血糖值显著升高,高血糖的定义是水处理组和曼尼托治疗组的控制平均值的 3 倍。水处理控制每天进出水,提供压力/处理控制。曼尼托在体外葡萄糖研究19,20中充当渗透控制,因为它是一种6碳糖,如葡萄糖,但不被细胞占用。为了与这些研究和斑马鱼…

Discussion

糖尿病是一个全国性的问题。研究表明,到2030年,估计有4亿人将患有某种形式的糖尿病。在啮齿动物模型中,使用基因操作研究2型DM。在大鼠中,扎克糖尿病脂肪大鼠(ZDF)和大须卡长埃文斯德岛脂肪大鼠(OLETF)提供了更多关于2型DM10的影响的信息。此外,高脂肪饮食已用于啮齿动物诱发高血糖。这反映了本文中提出的非侵入性程序。使用我们的非侵入性协议,我们可以诱发?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢 VPC、CJR 和 MCP 为本协议的制定。EMM 获得美国大学文理学院研究生支持的资助,以开展此项研究。这项工作还得到了美国大学梅隆学院奖的支持,并通过美国大学艺术与科学学院(VPC)提供资金。

Materials

Airline Tubing petsmart 5291863 This can be used in the tank to circulate air
Airpump petsmart 5094984 This can be used in the tank to circulate air
Airstones petsmart 5149683 This can be used in the tank to circulate air
D-glucose Sigma G8270-5KG
D-mannitol Acros Organics AC125340050
Freestyle Lite Meter Amazon B01LMOMLTU
Freestyle Lite Strips Amazon B074ZN3H2Z
Net petsmart 5175115
Tanks Amazon B0002APZO4

Referências

  1. Rubinstein, A. L. Zebrafish: from disease modeling to drug discovery. Current Opinion in Drug Discovery and Development. 6 (2), 218-223 (2003).
  2. Gerlai, R. Associative learning in zebrafish (Danio rerio). Methods in Cell Biology. 101, 249-270 (2011).
  3. Goldsmith, J. R., Jobin, C. Think small: zebrafish as a model system of human pathology. BioMed Research International. , (2012).
  4. Moss, J. B., et al. Regeneration of the pancreas in adult zebrafish. Diabetes. 58 (8), 1844-1851 (2009).
  5. Connaughton, V. P., Baker, C., Fonde, L., Gerardi, E., Slack, C. Alternate immersion in an external glucose solution differentially affects blood sugar values in older versus younger zebrafish adults. Zebrafish. 13 (2), 87-94 (2016).
  6. Etuk, E. U. Animal models for studying diabetes mellitus. Agriculture and Biology Journal of North America. 1 (2), 130-134 (2010).
  7. Agardh, E., Bruun, A., Agardh, C. D. Retinal glial cell immunoreactivity and neuronal cell changes in rats with STZ-induced diabetes. Current Eye Research. 23 (4), 276-284 (2001).
  8. Carmo, A., Cunha-Vaz, J. G., Carvalho, A. P., Lopes, M. C. Nitric oxide synthase activity in retinas from non-insulin-dependent diabetic Goto-Kakizaki rats: correlation with blood-retinal barrier permeability. Nitric Oxide. 4 (6), 590-596 (2000).
  9. Ramsey, D. J., Ripps, H., Qian, H. An electrophysiological study of retinal function in the diabetic female rat. Investigative Ophthalmology & Visual Science. 47 (11), 5116-5124 (2006).
  10. Biessels, G. J., Gispen, W. H. The impact of diabetes on cognition: what can be learned from rodent models. Neurobiology of Aging. 26 (1), 36-41 (2005).
  11. Intine, R. V., Olsen, A. S., Sarras, M. P. A zebrafish model of diabetes mellitus and metabolic memory. Journal of Visualized Experiments. (72), e50232 (2013).
  12. Sarras, M. P., Intine, R. V. Use of zebrafish as a disease model provides a unique window for understanding the molecular basis of diabetic metabolic memory. Research on Diabetes. , (2013).
  13. Gleeson, M., Connaughton, V., Arneson, L. S. Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetologica. 44 (3), 157-163 (2007).
  14. Capiotti, K. M., et al. Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio). Behavioural Brain Research. 274, 319-325 (2014).
  15. Capiotti, K. M., et al. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 171, 58-65 (2014).
  16. Capiotti, K. M., et al. Hyperglycemia alters E-NTPDases, ecto-5′-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio). Purinergic Signaling. 12 (2), 211-220 (2016).
  17. Ali, Z., et al. Photoreceptor Degeneration Accompanies Vascular Changes in a Zebrafish Model of Diabetic Retinopathy. Investigative Ophthalmology & Visual Science. 61 (2), 43 (2020).
  18. Wiggenhauser, L. M., et al. Activation of Retinal Angiogenesis in Hyperglycemic pdx1-/- Mutants. Diabetes. 69 (5), 1020-1031 (2020).
  19. Chen, X. L., et al. Involvement of HMGB1 mediated signalling pathway in diabetic retinopathy: evidence from type 2 diabetic rats and ARPE-19 cells under diabetic condition. Journal of Ophthalmology. 97, 1598-1603 (2013).
  20. Costa, E., et al. Effects of light exposure, pH, osmolarity, and solvent on the retinal pigment epithelial toxicity of vital dyes. American Journal of Ophthalmology. 155, 705-712 (2013).
  21. Alvarez, Y., et al. Predominant cone photoreceptor dysfunction in a hyperglycemic model of non-proliferative diabetic retinopathy. Disease Models and Mechanisms. 3, 236-245 (2010).
  22. Fletcher, E. L., Phipps, J. A., Wilkinson-Berka, J. L. Dysfunction of retinal neurons and glia during diabetes. Clinical and Experimental Optometry. 88, 132-145 (2005).
  23. Fletcher, E. L., Phipps, J. A., Ward, M. M., Puthussery, T., Wilkinson-Berka, J. L. Neuronal and glial abnormality as predictors of progression of diabetic retinopathy. Current Pharmaceutical Design. 13, 2699-2712 (2007).
  24. Agardh, E., Bruun, A., Agardh, C. D. Retinal glial cell immunoreactivity and neuronal cell changes in rats with STZ- induced diabetes. Current Eye Research. 23, 276-284 (2001).
  25. Barber, A. J., Antonetti, D. A., Gardner, T. W., Group, T. P. S. R. R. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. Investigative Ophthalmology & Visual Science. 41, 3561-3568 (2000).
  26. Lieth, E., et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Diabetes. 47, 815-820 (1998).
  27. Rungger-Brandle, E., Dosso, A. A., Leuenberger, P. M. Glial reactivity, an early feature of diabetic retinopathy. Investigative Ophthalmology & Visual Science. 41, 1971-1980 (2000).
  28. Zeng, X. X., Ng, Y. K., Ling, E. A. Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Visual Neuroscience. 17, 463-471 (2000).
  29. Mizutani, M., Gerhardinger, C., Lorenzi, M. Muller cell changes in human diabetic retinopathy. Diabetes. 47, 445-449 (1998).
  30. Tanvir, Z., Nelson, R., DeCicco-Skinner, K., Connaughton, V. P. One month of hyperglycemia alters spectral responses of the zebrafish photopic electroretinogram. Disease Models and Mechanisms. 11, (2018).
  31. Hancock, H. A., Kraft, T. W. Oscillatory potential analysis and ERGs of normal and diabetic rats. Investigative Ophthalmology & Visual Science. 45, 1002-1008 (2004).
  32. Layton, C. J., Safa, R., Osborne, N. N. Oscillatory potentials and the b-wave: partial masking and interdependence in dark adaptation and diabetes in the rat. Graefe’s Archives for Clinical and Experimental Ophthalmology. 245, 1335-1345 (2007).
  33. Li, Q., Zemel, E., Miller, B., Perlman, I. Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Experimental Eye Research. 74, 615-625 (2002).
  34. Kohzaki, K., Vingrys, A. J., Bui, B. V. Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Investigative Ophthalmology & Visual Science. 49, 3595-3604 (2008).
  35. Phipps, J. A., Yee, P., Fletcher, E. L., Vingrys, A. J. Rod photoreceptor dysfunction in diabetes: activation, deactivation, and dark adaptation. Investigative Ophthalmology & Visual Science. 47, 3187-3194 (2006).
check_url/pt/61935?article_type=t

Play Video

Citar este artigo
McCarthy, E., Rowe, C. J., Crowley-Perry, M., Connaughton, V. P. Alternate Immersion in Glucose to Produce Prolonged Hyperglycemia in Zebrafish. J. Vis. Exp. (171), e61935, doi:10.3791/61935 (2021).

View Video