Summary

超高速利格宁从不寻常的地中海木质细胞残留物中提取

Published: March 09, 2021
doi:

Summary

深乳酸溶剂基,微波辅助预处理是一个绿色,快速,高效的过程,为木质细胞分馏和高纯度木质素回收。

Abstract

预处理仍然是木质细胞学生物精炼过程中最昂贵的一步。它必须通过最大限度地减少化学需求、功率和热量消耗以及使用环保溶剂来实现成本效益。深乳酸盐溶剂 (DES) 是可持续生物定义中的关键、绿色和低成本溶剂。它们是透明混合物,其特点是至少由一个氢键供体和一个氢键接受者产生的低冰点。虽然 DES 是很有前途的溶剂,但有必要将其与经济加热技术(如微波辐照)相结合,以获得具有竞争力的盈利能力。微波辐照是缩短加热时间和提高分馏的一项很有前途的策略,因为它可以迅速达到适当的温度。本研究的目的是开发一种单步、快速的生物质分馏和木质素提取方法,使用低成本和可生物降解的溶剂。

在这项研究中,使用三种DES进行了60年代的微波辅助DES预处理,在800 W。DES混合物由胆碱氯化物(ChCl)和三个氢键捐赠者(HBDs)简单制备:单碳酸(乳酸)、二甲基糖酸(草酸)和尿素。这种预处理用于从海洋残留物(波西多尼亚叶和藻类)、农业食品副产品(杏仁壳和橄榄果)、森林残留物(松果)和常年木质细胞草(斯蒂帕特纳西西玛)中恢复生物质分馏和木质素。进一步分析以确定回收木质素的产量、纯度和分子重量分布。此外,DESs对提取木质素中的化学功能组的影响由富利埃转化红外(FTIR)光谱仪确定。结果表明,ChCl-草酸混合物具有最高的木质素纯度和最低的产量。本研究表明,DES微波工艺是一种超高速、高效且具有成本竞争力的木质细胞生物质分馏技术。

Introduction

可持续的生物精炼过程将生物质加工、其分馏成感兴趣的分子,并转化为增值产品1。在第二代生物修复中,预处理被认为是将生物质分成主要成分2的必要条件。利用化学、物理或生物策略的传统预处理方法已得到广泛应用然而,这种预处理被认为是生物修复中最昂贵的一步,并具有其他缺点,如加工时间长,热和功耗高,溶剂杂质4。最近,DESs的特性与离子液体3相似,由于生物降解性、环保性、易合成性、治疗后恢复等优点,成为绿色溶剂。

DES 是至少一种 HBD 的混合物,如乳酸、粘液酸或草酸,以及氢键接受剂 (HBA) 的混合物,如贝坦或氯化胆 (ChCl)6。HBA-HBD 相互作用使催化机制能够使化学键裂开,导致生物质分裂和木质素分离。许多研究人员已经报告了基于DES的木质细胞素原料的预处理,如玉米棒上的ChCl-甘油和7号、8、ChCl-尿素、 小麦稻草上的ChCl-草酸9,桉树锯末上的ChCl-乳酸10,木材上的ChCl-醋酸11和木上的ChCl-乙烯乙二醇为了提高DES效率,预处理应与微波处理相结合,以加速生物质分馏5。许多研究人员报告了这种对8号木和玉米茎、开关草和米斯坎图斯5号的联合预处理(DES和微波),这为在短时间内对DES在木质细胞分馏和木质素提取方面的能力提供了新的见解。

木质素是一种酚类巨分子,作为生物聚合物生产的原料,是芳香单体和寡聚物化学物质生产的替代品。此外,木质素具有抗氧化和紫外线吸收活动13。一些研究已经报告了木质素在化妆品中的应用14,15。其在商业防晒产品的集成改善了产品的防晒系数(SPF)从SPF 15到SPF 30,只增加了2 wt % 的木质素和高达SPF 50,增加了10瓦特%的木质素16。本文描述了一种超快的木质素 – 碳水化合物方法,辅之以地中海生物量的 DES – 微波预处理。这些生物量由农业食品副产品组成,特别是橄榄豆和杏仁壳。被调查的其他生物量是海洋原产物(波西多尼亚叶和海生物)和源自森林的生物量(松果和野生草)。本研究的重点是测试低成本的绿色溶剂,以评估这种联合预处理对原料分馏的影响,调查其对木质素纯度和产量的影响,并研究其对提取木质素中的分子量和化学功能组的影响。

Protocol

1. 生物质的制备 生物质干燥 将从地中海海滩收获的波西多尼亚叶子和大洋球(波西多尼亚海洋)放在40°C的烤箱中,72小时。 将来自食品工业的杏仁壳(普鲁努斯杜丽花)和从橄榄油厂获得的橄榄果壳(欧罗巴利亚 L.)放在 40 °C 的烤箱中,以 72 小时的速度放置。 将从森林中收集的松果(皮努斯哈莱彭西斯)和从地中海南部盆地收集的阿?…

Representative Results

图2A-C描绘了在混合微波-DES预处理后从图1A-F中显示的六种原料中提取的木质素产量。结果表明,DES1(ChCl-草酸)(图2A)获得的木质素产量低于DES2(氯化物酸)和DES3(ChCl-尿素)(图2B,C)获得的产量。此外,松果(PC)和橄榄波?…

Discussion

这项研究有许多目标:首先是准备和使用具有离子液体和有机溶剂特性的低成本绿色溶剂。第二个目标是将生物量分成一步,提取木质素,而不需要初步步骤,例如使用碱性溶剂、基本或热物理技术使用 Soxhlet 或半纤维素提取可提取物。第三个目标是在治疗后通过简单的过滤来恢复木质素,无需调整pH度,而只需加入蒸馏水即可。使用微波辅助的基于 DES 的工艺从六种不同来源超高速提取木质素的…

Declarações

The authors have nothing to disclose.

Acknowledgements

MK 和 TB 感谢海瑟姆 ·阿耶布的统计分析和数字准备,瓦隆地区(欧洲区域发展-VERDIR)和高等教育和科学研究部长(陶菲克·贝塔伊布)提供资金。

Materials

HPLC Gel Permeation Chromatography Agilent 1200 series
1 methylimadazole Acros organics
2-deoxy-D-glucose (internal standard) Sigma Aldrich (St. Louis, USA)
Acetic acid Sigma Aldrich (St. Louis, USA)
Acetic anhydride Sigma Aldrich (St. Louis, USA)
Adjustables pipettors
Alkali alkali-extracted lignin
Arabinose (99%) Sigma Aldrich (St. Louis, USA)
Autoclave CERTO CLAV (Model CV-22-VAC-Pro)
Water Bath at 70 °C
Boric acid Sigma Aldrich (St. Louis, USA)
Bromocresol Sigma Aldrich (St. Louis, USA)
Catalyst CTQ (coded A22) (1.5 g K2SO4 + 0.045 g CuSO4.5 H2O + 0.045 g TiO2) Merck
Centrifugation container
Centrifuge BECKMAN COULTER Avanti J-E centrifuge
Ceramic crucibles
Choline chloride 99% Acros organics
Column Agilent PLGel Mixed C (alpha 3,000 (4.6 × 250 mm, 5 µm) preceded by a guard column (TSK gel alpha guard column 4.6 mm × 50 mm, 5 µm)
Column HP1-methylsisoxane (30 m, 0.32 mm, 0.25 mm)
Crucible porosity N°4 ( Filtering crucible) Shott Duran Germany boro 3.3
Deonized water
Dessicator
Dimethylformamide VWR BDH Chemicals
Dimethylsulfoxide Acros organics
Erlenmeyer flask
Ethanol Merck (Darmstadtt, Germany)
Filtering crucibles, procelain
Filtration flasks
Fourrier Transformed Inra- Red Vertex 70 Bruker apparatus
equipped with an attenuated total reflectance (ATR) module.
Spectra were recorded in the 4,000–400 cm−1 range with 32 scans
at a resolution of 4.0 cm−1
Galactose (98% Sigma Aldrich (St. Louis, USA)
Gaz Chromatography Agilent (7890 series)
Glass bottle 100 mL
Glass tubes ( borosilicate) with teflon caps 10 mL
Glucose (98% Sigma Aldrich (St. Louis, USA)
Golves
Graduated cylinder 50 mL /100 mL
H2SO4 Titrisol (0.1 N) Merck (Darmstadtt, Germany)
H2SO4 (95-98%) Sigma Aldrich (St. Louis, USA) BUCHI R-114)
Hummer cutter equiped with 1 mm and 0.5 mm sieve Mill Ttecator (Sweden) Cyclotec 1093
Indulin Raw lignin control
Kjeldahl distiller Kjeltec 2300 (Foss)
Kjeldahl tube FOSS
Kjeldhal rack
Kjeldhal digester Kjeltec 2300 (Foss)
Kjeldhal suction system
Lab Chem station Software GC data analysis
Lactic acid Merck (Darmstadtt, Germany)
Lithium chloride LiCl Sigma Aldrich (St. Louis, USA)
Mannose (98%) Sigma Aldrich (St. Louis, USA)
Methyl red
Microwave START SYNTH MILESTONE Microwave laboratory system
Microwave temperature probe
Microwave container
Muffle Furnace
NaOH Merck (Darmstadtt, Germany)
Nitrogen free- paper
Opus spectroscopy software
Oven GmbH Memmert SNB100 Memmert SNB100
Oxalic acid VWR BDH Chemicals
P 1000 Soda-processed lignin
pH paper
precision balance
Infrared spectroscopy
Quatz cuvette
Rhamnose (98%) Sigma Aldrich (St. Louis, USA)
Rotary vacuum evaporator Bucher
Round-bottom flask 500 mL
sodium borohydride NaBH4
Schott bottle glass bottle
Sovirel tubes sovirel Borosilicate glass tubes
Spatule
Special tube
Spectophotometer UV-1800 Shimadzu
Sterilization indicator tape
Stir bar in teflon
Stirring plate
Syringes
Sodium borohydride Sigma Aldrich (St. Louis, USA)
Titrisol Merck Merck 109984 0.1 N H2SO4
Urea VWR BDH Chemicals
Vials
VolumetriC flask 2.5 L /5 L Bucher
Vortex
Xylose (98%) Sigma Aldrich (St. Louis, USA)

Referências

  1. Kammoun, M., et al. Hydrothermal dehydration of monosaccharides promoted by seawater fundamentals on the catalytic role of inorganic salts. Frontiers in Chemistry. 7, 132 (2019).
  2. Kammoun, M., Ayeb, H., Bettaieb, T., Richel, A. Chemical characterisation and technical assessment of agri-food residues, marine matrices, and wild grasses in the South Mediterranean area: A considerable inflow for biorefineries. Waste Management. 118, 247-257 (2020).
  3. Zhang, C. W., Xia, S. Q., Ma, P. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology. 219, 1-5 (2016).
  4. Mora-Pale, M., Meli, L., Doherty, T. V., Linhardt, R. J., Dordick, J. S. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnology and Bioengineering. 108 (6), 1229-1245 (2011).
  5. Chen, Z., Wan, C. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresource Technologie. 250, 532-537 (2018).
  6. Francisco, M., Van Den Bruinhorst, A., Kroon, M. C. New natural and renewable low transition temperature mixtures ( LTTMs ): screening as solvents for lignocellulosic biomass processing. Green Chemistry. 14 (8), 2153-2157 (2012).
  7. Liu, Y. C., et al. Efficient cleavage of lignin – carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. Chem sus chem. 10, 1692-1700 (2017).
  8. Xu, G. C., Ding, J. C., Han, R. Z., Dong, J. J., Ni, Y. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource Technologie. 203, 364-369 (2016).
  9. Jablonský, M., Andrea, &. #. 3. 5. 2. ;., Kamenská, L., Vrška, M., Šima, J. Deep eutectic solvents fractionation of wheat straw deep eutectic solvents fractionation of wheat straw. Bioresources. 10 (4), 8039-8047 (2015).
  10. Shen, X. J., et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry. 21, 275-283 (2019).
  11. Alvarez-Vasco, C., et al. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chemistry. 18, 5133-5141 (2016).
  12. Banu, J. R., et al. A review on biopolymer production via lignin valorization. Bioresource Technologie. 290, 121790 (2019).
  13. Gordobil, O., Olaizola, P., Banales, J. M., Labidi, J. Lignins from agroindustrial by-products as natural ingredients for cosmetics chemical structure and in vitro sunscreen and cytotoxic activities. Molecules. 25 (5), 1131 (2020).
  14. Lee, C. S., Thu Tran, T. M., Weon Choi, J., Won, K. Lignin for white natural sunscreens. International Journal of Biological Macromolecules. 122, 549-554 (2019).
  15. Widsten, P. Lignin-based sunscreens-state-of-the-art, prospects and challenges. Cosmetics. 7, 85 (2020).
  16. Qian, Y., Qiu, X., Zhu, S. Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Royal Society of Chemistry. 17, 320-324 (2015).
  17. Zijlstra, D. S., et al. Extraction of lignin with high β-O-4 content by mild ethanol extraction and its effect on the depolymerization yield. Journal of Visualized Experiments. (143), e58575 (2019).
check_url/pt/61997?article_type=t

Play Video

Citar este artigo
Kammoun, M., Berchem, T., Richel, A. Ultrafast Lignin Extraction from Unusual Mediterranean Lignocellulosic Residues. J. Vis. Exp. (169), e61997, doi:10.3791/61997 (2021).

View Video