Summary

Localização, Dissecção e Análise do Gânglio Murine Stellate

Published: December 22, 2020
doi:

Summary

Alterações fisiopatológicas no sistema nervoso autônomo cardíaco, especialmente em seu ramo simpático, contribuem para o surgimento e manutenção de arritmias ventriculares. No presente protocolo, mostramos como caracterizar gânglios estelares murinos para melhorar a compreensão dos processos moleculares e celulares subjacentes.

Abstract

O sistema nervoso autônomo é um driver substancial de eletrofisiologia cardíaca. Especialmente o papel de seu ramo simpático é uma questão de investigação em curso na fisiopatologia das arritmias ventriculares (VA). Os neurônios da gânglios estelares (SG)   estruturas bilaterais em forma de estrela da cadeia simpática   são um componente importante da infraestrutura simpática. O SG é um alvo reconhecido para o tratamento via denervação cardíaca em pacientes com terapia-refratário va. Embora a remodelagem neuronal e a ativação gliana no SG tenham sido descritas em pacientes com VA, os processos celulares e moleculares subjacentes que potencialmente precedem o início da arritmia são apenas insuficientemente compreendidos e devem ser elucidados para melhorar a modulação autônoma. Modelos de mouse nos permitem estudar remodelagem neuronal simpática, mas a identificação do Murine SG é um desafio para o investigador inexperiente. Assim, faltam estudos biológicos celulares e moleculares aprofundados da SG murina para muitas doenças cardíacas comuns. Aqui, descrevemos um repertório básico para dissecar e estudar o SG em camundongos adultos para análises no nível de RNA (isolamento de RNA para análises de expressão genética, hibridização in situ), nível de proteína (coloração de montagem total imunofluorescente) e nível celular (morfologia básica, medição do tamanho da célula). Apresentamos soluções potenciais para superar desafios na técnica de preparação e como melhorar a coloração através da sacieciação da autofluorescência. Isso permite a visualização de neurônios, bem como células gliais através de marcadores estabelecidos, a fim de determinar processos de composição celular e remodelação. Os métodos aqui apresentados permitem caracterizar o SG para obter mais informações sobre disfunção autônoma em camundongos propensos ao VA e podem ser complementados por técnicas adicionais que investigam componentes neuronais e gliais do sistema nervoso autônomo no coração.

Introduction

O sistema nervoso autônomo cardíaco é um equilíbrio fortemente regulado de componentes simpáticos, parassimpáticos e sensoriais que permite ao coração se adaptar às mudanças ambientais com a resposta fisiológica adequada1,2. Distúrbios nesse equilíbrio, por exemplo, um aumento da atividade solidária, foram estabelecidos como um driver-chave para o início, bem como a manutenção de arritmias ventriculares (VA)3,4. Portanto, a modulação autônoma, alcançada através da redução farmacológica da atividade simpática com beta-bloqueadores, tem sido uma pedra angular no tratamento de pacientes com VA por décadas5,6. Mas, apesar das intervenções farmacológicas e baseadas em cateter, um número relevante de pacientes ainda sofre de VA7recorrente .

A entrada simpática ao coração é mediada principalmente através de corpos de células neuronais na gânglio estelar (SG), estruturas bilaterais em forma de estrela da cadeia simpática, que retransmitem informações através de numerosos nervos intratorácicos do tronco cerebral ao coração8,9,10. O nervo que brota do SG após a lesão está associado à VA e morte cardíaca súbita11,12, enfatizando o SG como alvo de modulação autônoma13,14. Uma redução da entrada simpática no coração pode ser alcançada temporariamente através de injeção percutânea de anestésicos locais ou permanentemente por remoção parcial do SG via toracoscopia assistida por vídeo15,16. A denervação cardíaca simpática apresenta uma opção para pacientes com terapia-refratário VA com resultados promissores14,16,17. Aprendemos com a SG explantada desses pacientes que a remodelagem neuronal e neuroquímica, a neuro-inflamação e a ativação gliais são marcas de remodelação simpática que podem contribuir ou agravar a disfunção autônoma18,19. Ainda assim, os processos celulares e moleculares subjacentes nesses neurônios permanecem obscuros até o momento, por exemplo, o papel da transdiferente neuronal em um fenótipo colinérgico20,21. Estudos experimentais apresentam novas abordagens para tratar va, por exemplo, a redução da atividade nervosa simpática via optogenética22, mas a caracterização aprofundada do SG ainda está faltando em muitas patologias cardíacas que andam na mão com a VA. Modelos de camundongos que imitam essas patologias permitem estudar a remodelagem neuronal que potencialmente precede o aparecimento de arritmias12,23. Estes podem ser completados por análises morfológicas e funcionais para caracterização autônoma do coração e do sistema nervoso. No presente protocolo, fornecemos um repertório básico de métodos que permitem dissecar e caracterizar o SG murino para melhorar a compreensão do VA.

Protocol

Todos os procedimentos envolvendo animais foram aprovados pelo Comitê de Cuidado e Uso de Animais do Estado de Hamburgo (ORG870, 959) e pela Agência Estadual de Proteção à Natureza, Meio Ambiente e Defesa do Consumidor (LANUV, 07/11) e conforme o Guia nacional de Atenção e Uso de Animais de Laboratório (2011). Foram realizados estudos utilizando camundongos do sexo masculino e feminino (10-24 semanas) C57BL/6 (número de estoque 000664, Jackson Laboratories) e camundongos homozigos (db/db) ou heterozigous (db/het…

Representative Results

A Figura 1 visualiza como identificar e dissecar o SG. A Figura 1A mostra um desenho esquemático do local, enquanto a Figura 1B apresenta a visão no tórax após a remoção do pacote coração-pulmão. Os músculos longus colli esquerdo e direito medial do SG e da caixa torácica são marcos importantes para a orientação. A dissecação é realizada ao longo das linhas pontilhadas entre os músculos e a primeira costela. O SG e…

Discussion

A compreensão dos processos celulares e moleculares em neurônios e células gliais do sistema nervoso simpático que precedem o início do VA é de alto interesse, pois a parada cardíaca súbita continua sendo a causa de morte mais comum em todo o mundo5. Portanto, no manuscrito atual, fornecemos um repertório básico de métodos para identificar o Murine SG – elemento murino dentro dessa rede – e realizar análises subsequentes sobre RNA, proteína e nível celular.

<p class="jove_con…

Declarações

The authors have nothing to disclose.

Acknowledgements

Os autores gostariam de agradecer a Hartwig Wieboldt por sua excelente assistência técnica, e o UKE Microscopy Imaging Facility (Umif) do University Medical Center Hamburg-Eppendorf por fornecer microscópios e suporte. Esta pesquisa foi financiada pelo DZHK (Centro Alemão de Pesquisa Cardiovascular) [FKZ 81Z4710141].

Materials

96-well plate TPP 92097 RNAscope
Adhesion Slides SuperFrost plus  25 x 75 x 1 mm R. Langenbrinck 03-0060 Microscopy
Albumin bovine Fraction V receptor grade lyophil. Serva 11924.03 Whole mount staining
bisBenzimide H33342 trihydrochloride (Hoechst) Sigma-Aldrich, St. Louis, MO, USA B2261 Whole mount staining
Chicken anti neurofilament EMD Millipore AB5539 Whole mount staining
Dimethyl sulfoxide (DMSO) Merck, KGA, Darmstadt, Germany D8418 Whole mount staining
Donkey anti chicken IgY Alexa 647  Merck, KGA, Darmstadt, Germany AP194SA6 Whole mount staining
Donkey anti goat IgG Alexa 568  Thermo Fisher Scientific A11057 Whole mount staining
Donkey anti rabbit IgG Alexa 488  Thermo Fisher Scientific A21206 Whole mount staining
Drying block 37-100 mm Whatman (Sigma Aldrich) WHA10310992  Whole mount staining
Eosin Y Sigma Aldrich E4009 Whole mount staining
Ethanol 99 % denatured with MEK, IPA and Bitrex (min. 99,8 %) Th.Geyer 2212.5000 Whole mount staining
Eukitt mounting medium AppliChem 253681.0008 Whole mount staining
Fluoromount-G Southern Biotech 0100-01 Whole mount staining
Fluoromount-G + DAPI Southern Biotech 0100-20 Whole mount staining
Goat anti choline acetyltransferase EMD Millipore AP144P Whole mount staining
H2O2 30% (w/w) Merck, KGA, Darmstadt, Germany H1009 Whole mount staining
Heparin Sodium 25.000 UI / 5ml Rotexmedica PZN: 3862340 Preparation SG
High-capacity cDNA reverse transctiption kit Life technologies  4368813 RNA isolation
Isoflurane (Forene) Abbott Laboratories 2594.00.00 Preparation SG
Mayer's hemalum solution Merck 1.09249.0500 Whole mount staining
Methanol Sigma-Aldrich 34860 Whole mount staining
Microscope cover glasses 20×20 mm or smaller Marienfeld 0101040 Whole mount staining
miRNeasy Mini Kit Qiagen 217004 RNA isolation
NanoDrop 2000c Thermo Fisher Scientific ND-2000C RNA isolation
Opal 570 Reagent Pack Akoya Bioscience FP1488001KT RNAscope
Paraformaldehyde, 16% w/v aq. soln., methanol free  Alfa Aesar 43368 Whole mount staining
Pasteur pipettes, LDPE, unsterile, 3 ml, 154 mm Th.Geyer 7691202 Whole mount staining
Phosphate-buffered saline tablets Gibco 18912-014 Whole mount staining
Pinzette Dumont SS Forceps FineScienceTools 11203-25 Preparation SG
QIAzol Lysis Reagent Qiagen  79306 RNA isolation
Rabbit anti tyrosine hydroxylase EMD Millipore AB152 Whole mount staining
RNAlater Merck R0901-100ML RNA isolation (optional)
RNAscope Multiplex Fluorescent Reagent Kit v2 biotechne (ACD) 323100 RNAscope
RNAscope Probe-Mm-S100b-C2 biotechne (ACD) 431738-C2 RNAscope
RNAscope Probe-Mm-Tubb3 biotechne (ACD) 423391 RNAscope
Stainless steel beads 7 mm  Qiagen  69990 RNA isolation
Sudan black B Roth 0292.2 Whole mount staining
TaqMan Gene Expression Assay Cdkn1b (Mm00438168_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan Gene Expression Assay Choline acetyltransferase (Mm01221880_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan Gene Expression Assay MKi67 (Mm01278617_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan Gene Expression Assay PTPCR (Mm01293577_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan Gene Expression Assay S100b (Mm00485897_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan Gene Expression Assay Tyrosin Hydroxylase (Mm00447557_m1) Thermo Fisher Scientific 4331182 Gene expression analysis
TaqMan mastermix Applied biosystems 4370074 Gene Expression analysis 
Tissue Lyser II Qiagen 85300 RNA isolation
Triton X-100 10% solution Sigma-Aldrich 93443-100ml Whole mount staining
Tween-20 Sigma-Aldrich P9416-100ML RNAscope
Wacom bamboo pen Wacom CTL-460/K Cell size measurements
Whatman prepleated qualitative filter paper, Grade 595 1/2 Sigma-Aldrich WHA10311647 Whole mount staining
Wheat Germ Agglutinin, Alexa Fluor 633 Conjugate Thermo Fisher Scientific W21404 RNAscope

Referências

  1. Goldberger, J. J., Arora, R., Buckley, U., Shivkumar, K. Autonomic nervous system dysfunction: JACC focus seminar. Journal of the American College of Cardiology. 73 (10), 1189-1206 (2019).
  2. Jänig, W. Neurocardiology: a neurobiologist’s perspective. The Journal of Physiology. 594 (14), 3955-3962 (2016).
  3. Meng, L., Shivkumar, K., Ajijola, O. Autonomic Regulation and Ventricular Arrhythmias. Current Treatment Options in Cardiovascular Medicine. 20 (5), (2018).
  4. Jungen, C., et al. Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias. Nature Communications. 8, 14155 (2017).
  5. Al-Khatib, S. M., et al. AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. 138 (13), 272 (2018).
  6. Yusuf, S., Wittes, J., Friedman, L. Overview of results of randomized clinical trials in heart disease: I. treatments following myocardial infarction. JAMA: The Journal of the American Medical Association. 260 (14), 2088-2093 (1988).
  7. Sapp, J. L., et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. New England Journal of Medicine. 375 (2), 111-121 (2016).
  8. Yasunaga, K., Nosaka, S. Cardiac sympathetic nerves in rats: Anatomical and functional features. The Japanese Journal of Physiology. 29 (6), (1979).
  9. Pardini, B. J., Lund, D. D., Schmid, P. G. Organization of the sympathetic postganglionic innervation of the rat heart. Journal of the Autonomic Nervous System. 28 (3), 193-201 (1989).
  10. Meyer, C., Scherschel, K. Ventricular tachycardia in ischemic heart disease: The sympathetic heart and its scars. American Journal of Physiology – Heart and Circulatory Physiology. 312 (3), 549-551 (2017).
  11. Cao, J. M., et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 101 (16), 1960-1969 (2000).
  12. Ren, C., et al. Nerve sprouting suppresses myocardial Ito and IK1 channels and increases severity to ventricular fibrillation in rat. Autonomic Neuroscience: Basic and Clinical. 144 (1-2), 22-29 (2008).
  13. Zipes, D. P., et al. Treatment of ventricular arrhythmia by permanent atrial pacemaker and cardiac sympathectomy. Annals of Internal Medicine. 68 (3), 591-597 (1968).
  14. Kusumoto, F. M., et al. Systematic review for the 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. 138 (13), (2018).
  15. Cronin, E. M., et al. 2019 HRS/EHRA/APHRS/LAHRS Expert Consensus Statement on Catheter Ablation of Ventricular Arrhythmias: Executive Summary. Heart Rhythm. , (2019).
  16. Vaseghi, M., et al. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: Intermediate and long-term follow-up. Heart Rhythm. 11 (3), 360-366 (2014).
  17. Vaseghi, M., et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias. Journal of the American College of Cardiology. 69 (25), 3070-3080 (2017).
  18. Ajijola, O. A., et al. Inflammation, oxidative stress, and glial cell activation characterize stellate ganglia from humans with electrical storm. JCI insight. 2 (18), 1-11 (2017).
  19. Rizzo, S., et al. T-cell-mediated inflammatory activity in the stellate ganglia of patients with ion-channel disease and severe ventricular arrhythmias. Circulation: Arrhythmia and Electrophysiology. 7 (2), 224-229 (2014).
  20. Kanazawa, H., et al. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. Journal of Clinical Investigation. 120 (2), 408-421 (2010).
  21. Olivas, A., et al. Myocardial infarction causes transient cholinergic transdifferentiation of cardiac sympathetic nerves via gp130. Journal of Neuroscience. 36 (2), 479-488 (2016).
  22. Yu, L., et al. Optogenetic Modulation of Cardiac Sympathetic Nerve Activity to Prevent Ventricular Arrhythmias. Journal of the American College of Cardiology. 70 (22), 2778-2790 (2017).
  23. Jungen, C., et al. Increased arrhythmia susceptibility in type 2 diabetic mice related to dysregulation of ventricular sympathetic innervation. American Journal of Physiology – Heart and Circulatory Physiology. 317 (6), 1328-1341 (2019).
  24. Hedger, J. H., Webber, R. H. Anatomical study of the cervical sympathetic trunk and ganglia in the albino rat (Mus norvegicus albinus). Acta Anatomica. 96 (2), 206-217 (1976).
  25. Furlan, A., et al. Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nature Neuroscience. 19 (10), 1331-1340 (2016).
  26. Al Khafaji, F. A. H., Anderson, P. N., Mitchell, J., Mayor, D. The permeability of the capsule of autonomic ganglia to horseradish peroxidase. Journal of Anatomy. 137 (4), 675-682 (1983).
  27. Armour, J. A., Murphy, D. A., Yuan, B. X., Macdonald, S., Hopkins, D. A. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anatomical Record. 247 (2), 289-298 (1997).
  28. Fedoroff, S., Richardson, A., Johnson, M. I. Primary Cultures of Sympathetic Ganglia. Protocols for Neural Cell Culture. (11051), 71-94 (2003).
  29. Scherschel, K., et al. Cardiac glial cells release neurotrophic S100B upon catheter-based treatment of atrial fibrillation. Science Translational Medicine. 11 (493), 1-12 (2019).
  30. Sun, Y., et al. Sudan black B reduces autofluorescence in murine renal tissue. Archives of Pathology and Laboratory Medicine. 135 (10), 1335-1342 (2011).
  31. Alanentalo, T., et al. Tomographic molecular imaging and 3D quantification within adult mouse organs. Nature Methods. 4 (1), 31-33 (2007).
  32. Kersigo, J., et al. A RNAscope whole mount approach that can be combined with immunofluorescence to quantify differential distribution of mRNA. Cell and Tissue Research. 374 (2), 251-262 (2018).
  33. Schindelin, J., et al. Fiji: An open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  34. Bassil, G., et al. Pulmonary vein ganglia are remodeled in the diabetic heart. Journal of the American Heart Association. 7 (23), (2018).
  35. Ziegler, K. A., et al. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovascular Research. 114 (2), 291-299 (2018).
  36. Bayles, R. G., et al. Transcriptomic and neurochemical analysis of the stellate ganglia in mice highlights sex differences. Scientific Reports. 8 (1), 8963 (2018).
  37. Morales, M. A., et al. Localization of choline acetyltransferase in rat peripheral sympathetic neurons and its coexistence with nitric oxide synthase and neuropeptides. Proceedings of the National Academy of Sciences of the United States of America. 92 (25), 11819-11823 (1995).
  38. Jimnez, B., Mora-Valladares, E., Zetina, M. E., Morales, M. A. Occurrence, co-occurrence and topographic distribution of choline acetyl transferase, met-enkephalin and neurotensin in the stellate ganglion of the cat. Synapse. 43 (3), 163-174 (2002).
  39. Ruit, K. G., Osborne, P. A., Schmidt, R. E., Johnson, E. M., Snider, W. D. Nerve growth factor regulates sympathetic ganglion cell morphology and survival in the adult mouse. Journal of Neuroscience. 10 (7), 2412-2419 (1990).
  40. Guo, J., et al. Involvement of P2Y 12 receptor of stellate ganglion in diabetic cardiovascular autonomic neuropathy. Purinergic Signalling. 14 (4), 345-357 (2018).
  41. Ajijola, O. A., et al. Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: Neuropeptide and morphologic changes. Heart Rhythm. 12 (5), 1027-1035 (2015).
  42. Hinrichs, S., et al. Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America. 115 (37), 8727-8736 (2018).
  43. Westermann, D., et al. Reduced degradation of the chemokine MCP-3 by matrix metalloproteinase-2 exacerbates myocardial inflammation in experimental viral cardiomyopathy. Circulation. 124 (19), 2082-2093 (2011).
  44. Johnsen, D., Olivas, A., Lang, B., Silver, J., Habecker, B. Disrupting protein tyrosine phosphatase σ does not prevent sympathetic axonal dieback following myocardial infarction. Experimental Neurology. 276, 1-4 (2016).
  45. Manousiouthakis, E., Mendez, M., Garner, M. C., Exertier, P., Makita, T. Venous endothelin guides sympathetic innervation of the developing mouse heart. Nature Communications. 5, 3918 (2014).
  46. Wink, J., et al. Human adult cardiac autonomic innervation: Controversies in anatomical knowledge and relevance for cardiac neuromodulation. Autonomic Neuroscience. 227, 102674 (2020).
  47. Kummer, W., Fischer, A., Kurkowski, R., Heym, C. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neurociência. 49 (3), 715-737 (1992).
  48. Schäfer, M. K. H., Schütz, B., Weihe, E., Eiden, L. E. Target-independent cholinergic differentiation in the rat sympathetic nervous system. Proceedings of the National Academy of Sciences of the United States of America. 94 (8), 4149-4154 (1997).
  49. Chen, Y., et al. Effect of a Stellate Ganglion block on acute lung injury in septic rats. Inflammation. 41 (5), 1601-1609 (2018).
  50. Lipov, E. G., et al. Effects of stellate-ganglion block on hot flushes and night awakenings in survivors of breast cancer: a pilot study. The Lancet Oncology. 9 (6), 523-532 (2008).
  51. Mo, N., Wallis, D. I., Watson, A. Properties of putative cardiac and non-cardiac neurones in the rat stellate ganglion. Journal of the Autonomic Nervous System. 47 (1-2), 7-22 (1994).
  52. Rajendran, P. S., et al. Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nature Communications. 10 (1), 1-13 (2019).
  53. Hanani, M. Satellite glial cells in sympathetic and parasympathetic ganglia: In search of function. Brain Research Reviews. 64 (2), 304-327 (2010).
  54. Larsen, H. E., Lefkimmiatis, K., Paterson, D. J. Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease. Scientific Reports. 6, 1-11 (2016).
  55. Hasan, W., et al. Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Research. 1124 (1), 142-154 (2006).
  56. Lorentz, C. U., et al. Heterogeneous ventricular sympathetic innervation, altered β-adrenergic receptor expression, and rhythm instability in mice lacking the p75 neurotrophin receptor. American Journal of Physiology – Heart and Circulatory Physiology. 298 (6), 1652-1660 (2010).
check_url/pt/62026?article_type=t

Play Video

Citar este artigo
Scherschel, K., Bräuninger, H., Glufke, K., Jungen, C., Klöcker, N., Meyer, C. Location, Dissection, and Analysis of the Murine Stellate Ganglion. J. Vis. Exp. (166), e62026, doi:10.3791/62026 (2020).

View Video