Summary

用于刺激生物组织的电动和磁场设备

Published: May 15, 2021
doi:

Summary

该协议描述了逐步构建用于刺激生物组织的电刺激器和磁刺激器的过程。该协议包括模拟计算电场和磁场以及制造刺激器设备的准则。

Abstract

电场(EF)和磁场(MFs)已被组织工程广泛应用于改善细胞动力学,如增殖、迁移、分化、形态和分子合成。然而,在刺激细胞、组织或脚手架时,需要考虑这种刺激强度和刺激时间的变量。鉴于EFs和MF因细胞反应而异,尚不清楚如何制造产生足够生物物理刺激以刺激生物样本的设备。事实上,在应用生物物理刺激时,缺乏关于计算和分布的证据。该协议侧重于设计和制造产生EF和MF的设备,并实施计算方法,以预测生物样本内外的生物物理刺激分布。EF 装置由位于生物文化顶部和底部的两个平行不锈钢电极组成。电极连接到振荡器,在 60 kHz 下产生电压(50、100、150 和 200 Vp-p)。MF 设备由线圈组成,该线圈用变压器通电,在 60 Hz 时产生电流 (1 A) 和电压 (6 V)。建造了聚甲基甲基酸酯支撑,以定位线圈中间的生物培养物。计算模拟阐明了生物组织内外EF和MF的均匀分布。此计算模型是一个很有前途的工具,可以修改参数,如电压、频率、组织形态、井板类型、电极和线圈大小,以估计 EF 和 MFs 以实现蜂窝响应。

Introduction

EF和MF已被证明可以改变细胞动力学,刺激增殖和增加与组织1细胞外基质相关的主要分子的合成。这些生物物理刺激可以通过使用特定的设置和设备以不同的方式应用。关于产生EFs的装置,直接耦合刺激器使用电极,这些电极与体外生物样本接触,或直接植入体内患者和动物的组织中:然而,仍然存在一些局限性和缺陷,包括接触中的电极生物相容性不足、pH和分子氧水平的变化1。相反,间接耦合装置在两个电极之间产生EF,它们与生物样品3平行放置,从而允许非侵入性替代技术刺激生物样品,避免组织和电极之间的直接接触。这种类型的设备可以推断到未来的临床应用,以执行程序,以最小的入侵病人。与生成 MF 的设备相关,感应耦合刺激器会产生时间变化的电流,电流流经位于细胞培养物 4、5周围的线圈。最后,还有组合设备,它们使用EF和静态MF生成瞬态电磁场1。鉴于刺激生物样本的配置不同,有必要考虑应用生物物理刺激时的张力和频率等变量。电压是一个重要的变量,因为它影响生物组织的行为:例如,已经表明,细胞迁移,方向和基因表达取决于施加电压3,6,7,8,9,10的振幅。频率在生物物理刺激中起着重要作用,因为已经证明这些频率在体内自然发生。结果表明,高频率和低频对细胞有有益作用:特别是在细胞膜电压门钙通道或内质视网膜中,在细胞内1级、7级、11级触发不同的信号通路。

根据上述情况,用于生成 EF 的设备由连接到两个并行电容器12的电压发生器组成。该装置由阿姆斯特朗等人实施,以刺激13号软骨细胞的增殖率和分子合成。布赖顿等人对该设备进行了改造,他们通过钻取顶部和底部盖子来修改细胞培养井板。孔由盖片填充,底部玻璃用于培养生物组织。每个盖片上都放置电极以生成14EFs 。该装置用于电刺激软骨细胞、骨细胞和软骨系外植,显示细胞增殖增加14、15、16和分子合成3、17。Hartig等人设计的设备由波浪发生器和电压放大器组成,与并行电容器相连。电极由位于绝缘箱中的优质不锈钢制成。该装置用于刺激骨细胞,显示增殖和蛋白质分泌显著增加18。Kim等人使用的设备由双相电流刺激器芯片组成,该芯片采用高压金属氧化物互补半导体的制造工艺制造。培养井板被设计成在导电表面用电刺激培养细胞。电极被涂在镀金硅板19。该装置用于刺激骨细胞,显示血管内皮生长因子19的增殖和合成增加,刺激碱性磷酸活性、钙沉积和骨致癌蛋白20的产生。同样,该装置用于刺激人体骨髓骨髓中微血干细胞21的血管内皮生长因子的增殖率和表达。中尾等人设计的装置由连接到铂板的电压发生器组成。电极的建造是为了测量24个不同点的电能。该装置用于刺激软体细胞,表明EF没有改变细胞形态和增加增殖和分子合成22。Au等人使用的设备包括一个玻璃室,内有两根碳棒,与装有铂金线的心脏刺激器相连。这种刺激器用于刺激心肌细胞和成纤维细胞,改善细胞拉长和成纤维细胞对齐23。

基于赫尔姆霍尔茨线圈制造了不同的MF设备,以刺激几种类型的生物样本。例如,Helmholtz线圈已用于刺激软骨细胞24、25的增殖和分子合成,增强关节软骨去除植物26的蛋白体合成,改善与骨细胞形成相关的基因调节27,增加内皮细胞28的增殖和分子表达。赫尔姆霍尔茨线圈在位于另一个线圈前面的两个线圈中生成 MFs。线圈必须放置在等于线圈半径的距离内,以确保同质 MF。使用赫尔姆霍尔茨线圈的缺点在于线圈尺寸,因为它们需要足够大才能产生所需的 MF 强度。此外,线圈之间的距离必须足够,以确保MF在生物组织周围的均匀分布。为了避免赫尔姆霍尔茨线圈引起的问题,不同的研究一直集中在电磁阀线圈制造上。电磁线圈基于一根管子,该管用铜线缠绕以生成 MFs。铜线输入可以直接连接到插座或电源,为线圈通电,并在电磁阀中心创建 MFs。线圈的转弯越多,产生的 MF 就越大。MF 级级还取决于施加的电压和电流来为线圈29通电。电磁线圈已被用来刺激磁性不同类型的细胞,如赫拉,HEK293和MCF730或中微细胞干细胞31。

不同作者使用的设备没有考虑电极的足够大小或线圈的正确长度,以均匀地分布EF和MF。此外,设备产生固定电压和频率,限制其用于刺激特定的生物组织。因此,在此协议中执行计算模拟指南,以模拟电容系统和线圈,以确保 EF 和 MF 在生物样本上的均匀分布,从而避免边缘效应。此外,还表明电子电路的设计在电极和线圈之间产生电压和频率,从而产生EF和MF,从而克服电池培养井板和空气阻塞造成的局限性。这些修改将允许创建非侵入性和自适应性生物反应器来刺激任何生物组织。

Protocol

1. 模拟 PF 和 MF 注:在COMSOL多物理中对EF和MF进行了模拟。 选择轴对称的 2D 配置以表示电域和磁性两个域。 在物理配置中,选择 电流 接口以平行电极计算 PF,或选择 磁场 接口来计算线圈周围的 PF。 在研究配置中,选择 频率域 来计算一个或几个频率受到谐波激发的线性或线性模型的反应。 一旦进入界面开…

Representative Results

计算模拟3 图中显示了 EF 和 MF 的分布。一方面,可以观察电容系统(图3A)中EF的均匀分布。绘制了EF图,以详细观察生物样本(图3B)内场的大小。这种模拟有助于对电极的大小进行参数化,并制造它们以避免边缘效应。另一方面,可以观察电磁线圈(图3C)产生的MF的均匀分布。MF 被绘制为…

Discussion

用于治疗影响人体组织的不同病理的治疗方法是药理疗法32或手术干预33,寻求减轻局部疼痛或用外植或移植取代受影响的组织。最近,自体细胞疗法被提议作为治疗受伤组织的替代疗法,其中细胞从患者身上分离出来,并通过体外技术扩大,植入损伤34的部位。鉴于自体细胞疗法已证明对组织恢复有直接影响,已开发出不同的策略,以提高该?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢”国家金融基金会”提供的财政支持, 通过第80740-290-2020号赠款和 Valteam技术-研究与创新 为提供视频版设备和技术支持而获得的支持。

Materials

Electrical stimulator
Operational amplifier Motorola LF-353N —-
Quantity: 1
Resistors —- —- 22 kΩ
Quantity: 1
Resistors —- —- 10 kΩ
Quantity: 3
Resistors —- —- 2.6 kΩ
Quantity: 2
Resistors —- —- 2.2 kΩ
Quantity: 1
Resistors —- —- 1 kΩ
Quantity: 1
Resistors —- —- 220 Ω
Quantity: 2
Resistors —- —- 22 Ω
Quantity: 5
Resistors —- —- 10 Ω
Quantity: 1
Resistors —- —- 6.8 Ω
Quantity: 1
Resistors —- —- 3.3 Ω
Quantity: 2
Polyester capacitors —- —- 1 nF
Quantity: 2
Polyester capacitors —- —- 100 nF
Quantity: 1
VHF Band Amplifier Transistor JFET Toshiba 2SK161 —-
Quantity: 1
Power transistor BJT NPN Mospec TIP 31C —-
Quantity: 1
Zener diode Microsemi 1N4148 —-
Quantity: 1
Switch Toogle Switch SPDT – T13 —-
Quantity: 3
Toroidal ferrite core Caracol —- T*22*14*8
Quantity: 1
Cooper wire Greenshine —- AWG – 24
Quantity: 1
Relimate header with female housing ADAFRUIT —- 8 pin connectors
Quantity: 1
Relimate header with female housing ADAFRUIT —- 2 pin connectors
Quantity: 1
Female plug terminal connector JIALUN —- 4mm Lantern Plugs (Plug + Socket) 15 A
Quantity: 1
Aluminum Heat Sink AWIND —- For TIP 31C transistor
Quantity: 1
Led CHANZON —- 5 mm red
Quantity: 1
Integrated circuit socket connector Te Electronics Co., Ltd. —- Double row 8-pin DIP
Quantity: 1
3 pin connectors set STAR —- JST PH 2.0
Quantity: 3
2 pin screw connectors STAR —- For PCB
Quantity: 1
3 pin screw connectors STAR —- For PCB
Quantity: 1
Banana connector test lead JIALUN —- P1041 – 4 mm – 15 A
Quantity: 7
Bullet connectors to banana plug charge lead JIALUN —- 4 mm male-male/female-female adapters – 15 A
Quantity: 1
Case —- —- ABS
Quantity: 1
Electrodes —- —- Stainless – steel
Quantity: 2
Electrode support —- —- Teflon
Quantity: 2
Printed circuit board Quantity: 1
Magnetic stimulator
Cooper wire Greenshine —- AWG – 18
Quantity: 1
AC power plugs —- —- 120 V AC – 60 Hz
Quantity: 1
Banana female connector test lead JIALUN —- 1Set Dual Injection – 4 mm – 15 A
Quantity: 2
Banana male connector test lead JIALUN —- 1Set Dual Injection – 4 mm 15 A
Quantity: 1
Cell culture well plate support —- —- PMMA
Quantity: 1
Fuse Bussmann 2A —-
Quantity: 1
Transformer —- —- 1A – 6 V AC
Quantity: 1
Tube —- —- PVC
Quantity: 1
Variable rheostat MCP BXS150 10 Ω
Quantity: 1
General equipment
Digital dual source  PeakTech DG 1022Z 2 x 0 – 30 V / 0 – 5 A CC / 5 V / 3 A fijo
Quantity: 1
Digital Oscilloscope Rigol DS1104Z Plus 100 MHz, bandwidth, 4 channels
Quantity: 1
Digital multimeter Fluke F179 Voltage CC – CA (1000 V). Current CC – CA 10 A. Frequency 100 kHz
Quantity: 1

Referências

  1. Balint, R., Cassidy, N. J., Cartmell, S. H. Electrical Stimulation: A Novel Tool for Tissue Engineering. Tissue Engineering Part B: Reviews. 19 (1), 48-57 (2013).
  2. Ercan, B., Webster, T. J. The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials. 31 (13), 3684-3693 (2010).
  3. Brighton, C., Wang, W., Clark, C. The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. The Journal of Bone and Joint Surgery-American. 90 (4), 833-848 (2008).
  4. Baerov, R. M., Morega, A. M., Morega, M. Analysis of magnetotherapy effects for post-traumatic recovery of limb fractures. Revue Roumaine des Sciences Techniques- Série électrotechnique et énergétique. 65 (1-2), 145-150 (2020).
  5. Escobar, J. F., et al. In Vitro Evaluation of the Effect of Stimulation with Magnetic Fields on Chondrocytes. Bioelectromagnetics. 41 (1), 41-51 (2019).
  6. Brighton, C., Wang, W., Clark, C. Up-regulation of matrix in bovine articular cartilage explants by electric fields. Biochemical and Biophysical Research Communications. 342 (2), 556-561 (2006).
  7. Xu, J., Wang, W., Clark, C., Brighton, C. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthritis and Cartilage. 17 (3), 397-405 (2009).
  8. Xia, Y., et al. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials. 183, 151-170 (2018).
  9. Richter, A., Bartoš, M., Ferková, &. #. 3. 8. 1. ;. Physical Analysis of Pulse Low-Dynamic Magnetic Field Applied in Physiotherapy BT. World Congress on Medical Physics and Biomedical Engineering 2018. , 239-245 (2019).
  10. Miyakoshi, J. Effects of static magnetic fields at the cellular level. Progress in Biophysics and Molecular Biology. 87, 213-223 (2005).
  11. Zhang, K., Guo, J., Ge, Z., Zhang, J. Nanosecond Pulsed Electric Fields (nsPEFs) Regulate Phenotypes of Chondrocytes through Wnt/β-catenin Signaling Pathway. Scientific Reports. 4 (5836), 1-8 (2014).
  12. Brighton, C. T., Unger, A. S., Stambough, J. L. In vitro growth of bovine articular cartilage chondrocytes in various capacitively coupled electrical fields. Journal of Orthopaedic Research. 2 (1), 15-22 (1984).
  13. Armstrong, P. F., Brighton, C., Star, A. M. Capacitively coupled electrical stimulation of bovine growth plate chondrocytes grown in pellet form. Journal of Orthopaedic Research. 6 (2), 265-271 (1988).
  14. Brighton, C., Townsend, P. Increased cAMP production after short-term capacitively coupled stimulation in bovine growth plate chondrocytes. Journal of Orthopaedic Research. 6 (4), 552-558 (1988).
  15. Brighton, C. T., Jensen, L., Pollack, S. R., Tolin, B. S., Clark, C. Proliferative and synthetic response of bovine growth plate chondrocytes to various capacitively coupled electrical fields. Journal of Orthopaedic Research. 7 (5), 759-765 (1989).
  16. Brighton, C. T., Okereke, E., Pollack, S. R., Clark, C. In vitro bone-cell response to a capacitively coupled electrical field. The role of field strength, pulse pattern, and duty cycle. Clinical Orthopaedics and Related Research. 285, 255-262 (1992).
  17. Wang, W., Wang, Z., Zhang, G., Clark, C., Brighton, C. T. Up-regulation of chondrocyte matrix genes and products by electric fields. Clinical Orthopaedics and Related Research. 427, 163-173 (2004).
  18. Hartig, M., Joos, U., Wiesmann, H. P. Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. European Biophysics Journal. 29 (7), 499-506 (2000).
  19. Kim, I. S., et al. Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 1763 (9), 907-916 (2006).
  20. Kim, I., et al. Novel Effect of Biphasic Electric Current on In Vitro Osteogenesis and Cytokine Production in Human Mesenchymal Stromal Cells. Tissue Engineering Part A. 15, 2411-2422 (2009).
  21. Kim, I., et al. Novel action of biphasic electric current in vitro osteogenesis of human bone marrow mesenchymal stromal cells coupled with VEGF production. Bone. 43, 43-44 (2008).
  22. Nakasuji, S., Morita, Y., Tanaka, K., Tanaka, T., Nakamachi, E. Effect of pulse electric field stimulation on chondrocytes. Asian Pacific Conference for Materials and Mechanics. 1, 13-16 (2009).
  23. Au, H. T. H., Cheng, I., Chowdhury, M. F., Radisic, M. Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes. Biomaterials. 28 (29), 4277-4293 (2007).
  24. Vanessa, N., et al. In vitro exposure of human chondrocytes to pulsed electromagnetic fields. European Journal of Histochemistry. 51 (3), 203-211 (2007).
  25. Pezzetti, F., et al. Effects of pulsed electromagnetic fields on human chondrocytes: An in vitro study. Calcified Tissue International. 65 (5), 396-401 (1999).
  26. De Mattei, M., et al. Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connective Tissue Research. 44 (3-4), 154-159 (2003).
  27. Sollazzo, V., Massari, L., Caruso, A., Mattei, M., Pezzetti, F. Effects of Low-Frequency Pulsed Electromagnetic Fields on Human Osteoblast-Like Cells In Wtro. Electromagnetobiology. 15, 75-83 (2009).
  28. Martino, C. F., Perea, H., Hopfner, U., Ferguson, V. L., Wintermantel, E. Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics. 31 (4), 296-301 (2010).
  29. Wada, K., et al. Design and implementation of multi-frequency magnetic field generator producing sinusoidal current waveform for biological researches. 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe). 2016, 1-8 (2016).
  30. Cho, H., Kim, S., Kim, K. K., Kim, K., Kim, K. Pulsed Electromagnetic Fields Stimulate Cellular Proliferation in Different Types of Cells. IEEE Transactions on Magnetics. 52 (7), 1-4 (2016).
  31. Yan, J., Dong, L., Zhang, B., Qi, N. Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagnetic Biology and Medicine. 29 (4), 165-176 (2010).
  32. Enoch, S., Grey, J. E., Harding, K. G. ABC of wound healing. Non-surgical and drug treatments. BMJ. 332 (7546), 900-903 (2006).
  33. Bhosale, A. M., Richardson, J. B. Articular cartilage: Structure, injuries and review of management. British Medical Bulletin. 87 (1), 77-95 (2008).
  34. Al Hamed, R., Bazarbachi, A. H., Malard, F., Harousseau, J. -. L., Mohty, M. Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer Journal. 9 (4), 44 (2019).
  35. Massari, L., et al. Biophysical stimulation of bone and cartilage: state of the art and future perspectives. International Orthopaedics. 43 (3), 539-551 (2019).
  36. Naskar, S., Kumaran, V., Basu, B. Reprogramming the Stem Cell Behavior by Shear Stress and Electric Field Stimulation: Lab-on-a-Chip Based Biomicrofluidics in Regenerative Medicine. Regenerative Engineering and Translational Medicine. 5 (2), 99-127 (2019).
  37. Hunckler, J., de Mel, A. A current affair: electrotherapy in wound healing. Journal of Multidisciplinary Healthcare. 10, 179-194 (2017).
  38. Henry, S. L., Concannon, M. J., Yee, G. J. The effect of magnetic fields on wound healing: experimental study and review of the literature. Eplasty. 8, 393-399 (2008).
  39. Hiemer, B., et al. Effect of electric stimulation on human chondrocytes and mesenchymal stem cells under normoxia and hypoxia. Molecular Medicine Reports. 18 (2), 2133-2141 (2018).
  40. Chao, P. H., et al. Chondrocyte translocation response to direct current electric fields. Journal of Biomechanical Engineering. 122 (3), 261-267 (2000).
  41. Zhao, M., Bai, H., Wang, E., Forrester, J., McCaig, C. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. Journal of Cell Science. 117 (3), 397-405 (2004).
  42. Li, X., Kolega, J. Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells. Journal of Vascular Research. 39 (5), 391-404 (2002).
  43. Singh, B., Dixit, A. Multistage amplifier and tuned amplifier. Analog Electronics. , 87-131 (2007).
  44. Esfandiari, E., et al. The effect of high frequency electric field on enhancement of chondrogenesis in human adipose-derived stem cells. Iranian Journal Basic Medical Sciences. 4 (3), 571-576 (2014).
  45. Mardani, M., et al. Induction of chondrogenic differentiation of human adipose-derived stem cells by low frequency electric field. Advanced Biomedical Research. 5 (97), 1-7 (2016).
  46. Karaman, O., Gümüşay, M., Demirci, E. A., Kaya, A. Comparative assessment of pulsed electromagnetic fields (PEMF) and pulsed radio frequency energy (PRFE) on an in vitro wound healing model. International Journal of Applied Electromagnetics and Mechanics. 57, 427-437 (2018).
  47. Glinka, M., et al. Test chambers for cell culture in static magnetic field. Journal of Magnetism and Magnetic Materials. 331, 208-215 (2013).
  48. Vacek, T. P., et al. Electrical stimulation of cardiomyocytes activates mitochondrial matrix metalloproteinase causing electrical remodeling. Biochemical and Biophysical Research Communications. 404 (3), 762-766 (2011).
  49. Okutsu, S., et al. Electric Pulse Stimulation Induces NMDA Glutamate Receptor mRNA in NIH3T3 Mouse Fibroblasts. The Tohoku Journal of Experimental Medicine. 215 (2), 181-187 (2008).

Play Video

Citar este artigo
Saiz Culma, J. J., Escobar Huertas, J. F., Garzón-Alvarado, D. A., Vaca-Gonzalez, J. J. Electric and Magnetic Field Devices for Stimulation of Biological Tissues. J. Vis. Exp. (171), e62111, doi:10.3791/62111 (2021).

View Video