Summary

E1Aミニジーンツールを使用したmRNAスプライシング変更の研究

Published: April 22, 2021
doi:

Summary

このプロトコルは、化学療法治療後の代替スプライシング調節において特徴のない機能を有するタンパク質の役割を評価するための迅速かつ有用なツールを提示する。

Abstract

mRNA処理には、5’キャッピング、ポリA付加、スプライシングなどの翻訳用mRNAを準備するための複数の同時ステップが必要です。構成的なスプライシングに加えて、代替mRNAスプライシングは、1つの遺伝子から多機能タンパク質の発現を可能にする。相互作用研究は一般的に新しいまたは未知のタンパク質に対する最初の分析であるため、餌タンパク質とスプライシング因子との関連は、mRNAスプライシングプロセスに参加できることを示すが、どのような文脈で、またはどの遺伝子が調節されているかを決定することは経験的プロセスである。この関数を評価する良い出発点は、古典的なミニジーンツールを使用することです。ここでは、異なる細胞ストレス刺激後の代替スプライシング変化を評価するためのアデノウイルスE1Aミニジーンの使用法を提示する。異なるストレス処理の後に、HEK293におけるE1Aミニジーンのスプライシングを安定的に過剰発現させるNek4タンパク質のスプライシングを評価した。このプロトコルは、E1Aミニジーントランスフェクション、細胞処理、RNA抽出およびcDNA合成、続いてPCRおよびゲル分析およびE1Aスプライス変異体の定量化を含む。特定の治療法と組み合わせたこのシンプルで確立された方法の使用は、細胞プロセスやmRNAスプライシングによって調節できる遺伝子に光を当てる信頼できる出発点です。

Introduction

スプライシングは、5’mRNAキャッピングと3’mRNAポリアデニル化に同時に発生する真核生物mRNA処理における最も重要なステップの一つです。スプライセオソームによるスプライシング部位(SS)の認識には、小さなリボヌクレオタンパク質(snRNP U1、U2、U4およびU6)を含むリボヌクレオタンパク質複合体、小さなRNA(snRNA)およびいくつかの調節タンパク質1 がスプライシングに必要である。

イントロン除去(構成スプライシング)に加えて、真核生物では、イントロンを保持することができ、エキソンを除外することができ、mRNA代替スプライシング(AS)と呼ばれるプロセスを構成する。代替プレmRNAスプライシングは、真核生物ゲノムのコード容量を拡大し、比較的少数の遺伝子から多数のタンパク質を産生することを可能にする。複数のエキソンを含むヒトmRNAの95〜100%が代替スプライシング2,3を受けることができると推定される。これは、神経細胞の発達、アポトーシス活性化および細胞ストレス応答4のような生物学的プロセスの基本であり、同じレパートリー遺伝子を使用して細胞機能を調節する生物の代替手段を提供する。

代替スプライシングに必要な機械は、構成スプライシングに使用されるのと同じであり、SSの使用は、代替スプライシングの発生のための主要な決定要因です。構成スプライシングは、強いスプライシング部位の使用に関連しており、これは通常、スプライセソーム認識のためのコンセンサスモチーフに類似している5。

代替エキソンは、典型的には、その シス−調節要素の一度構成エキソンよりも効率が低く認識され、これらのエキソンに隣接する5’SSおよび3’SSの配列は、スプライセソームに対する劣った結合能力を示す。mRNAはまた、エキソン(エキソニックスプライシングエンハンサー(ESE)およびエキソニックスプライシングサイレンサー(ESS))およびイントロン(イントロニックスプライシングエンハンサー(ISE)およびイントロニックスプライシングサイレンサー(ISS))に位置するエンハンサーまたはサイレンサーと名付けられた領域を含み、それぞれ5。これらの配列は、トランス調節要素、またはスプライシング因子(SF)によって認識される。SFは、主に、ESEsに結合するセリン/アルギニンリッチスプライシング因子(SRSF)とESSs配列5に結合する異種核リボヌクレオタンパク質(hnRNP)ファミリーの2つのファミリーのタンパク質によって表される。

代替スプライシングは、スプライシング因子6、7、8の相互作用パートナーおよび細胞局在化を修飾するトランス因子のリン酸化/脱リン酸化によって変調することができる。スプライシング因子の新しい調節因子を同定することは、スプライシングを調節するための新しいツールを提供することができ、その結果、いくつかの癌治療。

Anufrievaら 9、mRNAマイクロアレイ遺伝子発現プロファイルにおいて、101細胞株および異なるストレス状態(白金系薬物、ガンマ照射、トポイソメラーゼ阻害剤、チロシンキナーゼ阻害剤およびタキサン)におけるスプライセソーム成分のレベルにおける一貫した変化を観察した。スプライシングパターンと化学療法効果の関係は、化学療法耐性である肺癌細胞において既に実証されており、カスパーゼ-9変異体の変化率10を示す。化学療法パネルで治療されたHEK293細胞は、プロアポトーシス変異体の増加に伴うスプライシングの変化を示す。Gabriel et al.11 は、異なる細胞株におけるシスプラチン処理後のスプライシングの少なくとも700の事象の変化を観察し、スプライシング経路がシスプラチンに影響を受けていることを指摘した。スプライシングモジュレーターは既に抗腫瘍活性を実証しており、スプライシングが腫瘍の発達にとって重要であることを示し、主に化学療法応答12.したがって、化学療法薬のような細胞ストレッサー剤の後にスプライシングを調節する新しいタンパク質を特徴付けることは、治療の新しい戦略を発見するために非常に重要です。

相互作用研究からの代替スプライシング調節の手がかりは、特に新しいまたは特徴のないタンパク質の機能を特徴付けるために重要であり、ASにおけるタンパク質の実際の役割を検証するためのより一般的で簡単なアプローチを要求することができる。ミニ遺伝子は、スプライシング調節に影響を与えるタンパク質の一般的な役割の分析のための重要なツールです。それらは、代わりにスプライスおよび横たわるゲノム領域13を含む目的の遺伝子からのセグメントを含む。ミニジーンツールを使用すると、マイナーであり、したがって増幅反応に制限されないミニジーンの長さなどのいくつかの利点を持つin vivoのスプライシングの分析が可能になります。同じミニ遺伝子を異なる細胞株で評価することができます。すべての細胞成分は、主に翻訳後修飾(リン酸化および細胞区画の変化)の調節が存在し、13,14に対処することができる。さらに、代替スプライシングパターンの変化は、細胞ストレス後に観察され、かつ、ミニ遺伝子系を用いることで、異なる刺激によって変調される経路を同定することを可能にする。

スプライシングイベント13,14の異なる種類に特異的なミニジーンシステムが既にいくつか存在するが、予備的なアッセイとして、ミニジーンE1A15は、生体内での5’SS選択の研究のための非常に確立された代替スプライシングレポーターシステムである。1つの遺伝子のみから、E1A、5つのmRNAは、3つの異なる5′スプライス部位の選択に基づいて代替スプライシングによって生成され、1つの主要なまたは1つのマイナーな3′スプライス部位16、17、18の。E1A変異体の発現は、アデノウイルス感染の期間19、20に従って変化する。

我々は、両方のNek4アイソフォームがSRSF1およびhnRNPA1などのスプライシング因子と相互作用することを以前に示しており、アイソフォーム2はミニジーンE1A代替スプライシングを変化させるが、アイソフォーム1はその21では効果を有さない。アイソフォーム1は最も豊富なアイソフォームであり、化学療法抵抗とDNA損傷応答を変化させるため、ストレス状態でミニジーンE1A代替スプライシングを変えることができるかどうかを評価します。

Minigeneアッセイは、単純で低コストで迅速な方法であり、RNA抽出、cDNA合成、増幅およびアガロースゲル分析のみが必要であり、細胞代替スプライシングパターンに対する異なる治療法の影響まで、興味のあるタンパク質による代替スプライシングに対する効果が得られるため、評価に有用なツールとなり得る。

Protocol

1. めっき細胞 注: このプロトコルでは、以前に Nek4 の安定な誘導発現のために生成された HEK293 安定セルラインが21を使用したが、HEK293 22、HeLa23、24、25、26、U-2OS27、COS728、SH-SY5Y29のような他の多くの細胞株に適した同じプロ…

Representative Results

E1Aミニジーンを用いた5’スプライス部位アッセイを行い、化学療法博覧会後の細胞におけるスプライシングプロファイルの変化を評価した。パクリタキセルまたはシスプラチン処理後のHEK293安定細胞におけるAS調節におけるNek4-アイソフォーム1の役割を評価した。 アデノウイルスE1A領域は、異なるスプライスドナーの使用?…

Discussion

ミニ遺伝子は、生体内のグローバル代替スプライシングの効果を決定するための重要なツールです。このアデノウイルスミニジーンE1Aは、細胞13,14におけるこれらの量を増加させることによってタンパク質の役割を評価するために何十年も正常に使用されてきた。ここでは、化学療法曝露後の代替スプライシングを評価するためのミニジーンE1Aの使…

Declarações

The authors have nothing to disclose.

Acknowledgements

我々は、フンダサン・デ・アンパロ・ア・ペスキサ・ド・エスタド・デ・サンパウロ(FAPESP、グラント・テマティコ2017/03489-1を通じて、JKとFLB 2018/05350-3へのフェローシップ)とコンセルホ・ナシオナル・デ・デセンボルメント・チエンティフィコ・エ・デセンボルメント・チエンティフィコ・エ・デセンボルメント・チエンティフィコ・エ・ココモ(この資金)に感謝します。私たちは、PMTE1AプラスミドとZerlerとE1Aクローニングでの彼らの仕事のためにpMTE1AプラスミドとZerlerと同僚を提供してくれたエイドリアン・クレイナー博士に感謝したいと思います。また、パトリシア・モリエル教授、ワンダ・ペレイラ・アルメイダ博士、マルセロ・ランチェロッティ教授、カリーナ・コゴ・コゴ・ミュラー教授の研究室スペースと機器の使用に感謝します。

Materials

100 pb DNA Ladder Invitrogen 15628-050
6 wells plate Sarstedt 833920
Agarose Sigma A9539-250G
Cisplatin Sigma P4394
DEPC water ThermoFisher AM9920
DMEM ThermoFisher 11965118
dNTP mix ThermoFisher 10297-018
Fetal Bovine Serum – FBS ThermoFisher 12657029
Fluorescent Microscope Leica DMIL LED FLUO
Gel imaging acquisition system – ChemiDoc Gel Imagin System Bio-Rad
GFP – pEGFPC3 Clontech
HEK293 stable cells – HEK293 Flp-In Generated from Flp-In™ T-REx™ 293 – Invitrogen and described in ref 21
Hygromycin B ThermoFisher 10687010 Used for Flp-In cells maintenemant
Image processing and analysis software – FIJI software ref. 32
Lipid- based transfection reagent – jetOPTIMUS Polyplus Reagent Polyplus 117-07
Oligo DT ThermoFisher 18418020
Paclitxel Invitrogen P3456
Plate Reader/ UV absorbance Biotech Epoch Biotek/ Take3 adapter
pMTE1A plasmid Provided by Dr. Adrian Krainer
pMTE1A F Invitrogen  5’ -ATTATCTGCCACGGAGGTGT-3
pMTE1A R Invitrogen 5’ -GGATAGCAGGCGCCATTTTA-3’
Refrigerated centrifuge Eppendorf F5810R
Reverse Transcriptase – M-MLV ThermoFisher 28025013
Reverse transcriptase – Superscript IV ThermoFisher 18090050
Ribunuclease inhibitor RNAse OUT ThermoFisher 10777-019
RNA extraction phenol-chloroform based reagent – Trizol ThermoFisher 15596018
SybrSafe DNA gel stain ThermoFisher S33102
Taq Platinum Thermo 10966026
Tetracyclin Sigma T3383 Used for Flag empty or Nek4- Flag expression induction
Thermocycler Bio-Rad Bio-Rad T100
Trypsin Sigma T4799

Referências

  1. Ule, J., Blencowe, B. J. Alternative Splicing Regulatory Networks: Functions, Mechanisms, and Evolution. Molecular Cell. 76 (2), 329-345 (2019).
  2. Pan, Q., Shai, O., Lee, L. J., Frey, B. J., Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics. 40 (12), 1413-1415 (2008).
  3. Nilsen, T. W., Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature. 463 (7280), 457-463 (2010).
  4. Stamm, S. Signals and their transduction pathways regulating alternative splicing: a new dimension of the human genome. Human Molecular Genetics. 11 (20), 2409-2416 (2002).
  5. Kornblihtt, A. R., et al. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nature Reviews Molecular Cell Biology. 14 (3), 153-165 (2013).
  6. Zhong, X. -. Y., Ding, J. -. H., Adams, J. A., Ghosh, G., Fu, X. -. D. Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. Genes & Development. 23 (4), 482-495 (2009).
  7. Misteli, T., Cáceres, J. F., Clement, J. Q., Krainer, A. R., Wilkinson, M. F., Spector, D. L. Serine Phosphorylation of SR Proteins Is Required for Their Recruitment to Sites of Transcription In Vivo. Journal of Cell Biology. 143 (2), 297-307 (1998).
  8. Kanopka, A., et al. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature. 393 (6681), 185-187 (1998).
  9. Anufrieva, K. S., et al. Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells. Genome Medicine. 10 (1), 49 (2018).
  10. Shultz, J. C., et al. SRSF1 Regulates the Alternative Splicing of Caspase 9 Via A Novel Intronic Splicing Enhancer Affecting the Chemotherapeutic Sensitivity of Non-Small Cell Lung Cancer Cells. Molecular Cancer Research. 9 (7), 889-900 (2011).
  11. Gabriel, M., et al. Role of the splicing factor SRSF4 in cisplatin-induced modifications of pre-mRNA splicing and apoptosis. BMC Cancer. 15, (2015).
  12. Lee, S. C. -. W., Abdel-Wahab, O. Therapeutic targeting of splicing in cancer. Nature Medicine. 22 (9), 976-986 (2016).
  13. Cooper, T. A. Use of minigene systems to dissect alternative splicing elements. Methods. 37 (4), 331-340 (2005).
  14. Stoss, O., Stoilov, P., Hartmann, A. M., Nayler, O., Stamm, S. The in vivo minigene approach to analyze tissue-specific splicing. Brain Research Protocols. 4 (3), 383-394 (1999).
  15. Zerler, B., et al. Adenovirus E1A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells. Molecular and Cellular Biology. 6 (3), 887-899 (1986).
  16. Gattoni, R., Schmitt, P., Stevenin, J. In vitro splicing of adenovirus E1A transcripts: characterization of novel reactions and of multiple branch points abnormally far from the 3′ splice site. Nucleic Acids Research. 16 (6), 2389-2409 (1988).
  17. Stephens, C., Harlow, E. Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kd and 35 kd proteins. The EMBO journal. 6 (7), 2027-2035 (1987).
  18. Ulfendahl, P. J., et al. A novel adenovirus-2 E1A mRNA encoding a protein with transcription activation properties. The EMBO journal. 6 (7), 2037-2044 (1987).
  19. Berk, A. J., Sharp, P. A. Structure of the adenovirus 2 early mRNAs. Cell. 14 (3), 695-711 (1978).
  20. Svensson, C., Pettersson, U., Akusjärvi, G. Splicing of adenovirus 2 early region 1A mRNAs is non-sequential. Journal of Molecular Biology. 165 (3), 475-495 (1983).
  21. Basei, F. L., Meirelles, G. V., Righetto, G. L., dos Santos Migueleti, D. L., Smetana, J. H. C., Kobarg, J. New interaction partners for Nek4.1 and Nek4.2 isoforms: from the DNA damage response to RNA splicing. Proteome Science. 13 (1), 11 (2015).
  22. Zhou, Z., et al. The Akt-SRPK-SR Axis Constitutes a Major Pathway in Transducing EGF Signaling to Regulate Alternative Splicing in the Nucleus. Molecular Cell. 47 (3), 422-433 (2012).
  23. Caceres, J., Stamm, S., Helfman, D., Krainer, A. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science. 265 (5179), 1706-1709 (1994).
  24. Zhong, X. -. Y., Ding, J. -. H., Adams, J. A., Ghosh, G., Fu, X. -. D. Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. Genes & Development. 23 (4), 482-495 (2009).
  25. Naro, C., et al. The centrosomal kinase NEK2 is a novel splicing factor kinase involved in cell survival. Nucleic Acids Research. 42 (5), 3218-3227 (2014).
  26. Lu, C. -. C., Chen, T. -. H., Wu, J. -. R., Chen, H. -. H., Yu, H. -. Y., Tarn, W. -. Y. Phylogenetic and Molecular Characterization of the Splicing Factor RBM4. PLoS ONE. 8 (3), 59092 (2013).
  27. Jarnæss, E., et al. Splicing Factor Arginine/Serine-rich 17A (SFRS17A) Is an A-kinase Anchoring Protein That Targets Protein Kinase A to Splicing Factor Compartments. Journal of Biological Chemistry. 284 (50), 35154-35164 (2009).
  28. Bressan, G. C., et al. Functional association of human Ki-1/57 with pre-mRNA splicing events. FEBS Journal. 276 (14), 3770-3783 (2009).
  29. Vivarelli, S., et al. Paraquat Modulates Alternative Pre-mRNA Splicing by Modifying the Intracellular Distribution of SRPK2. PLoS ONE. 8 (4), 61980 (2013).
  30. Russell, W. C., Graham, F. L., Smiley, J., Nairn, R. Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5. Journal of General Virology. 36 (1), 59-72 (1977).
  31. Aranda, P. S., LaJoie, D. M., Jorcyk, C. L. Bleach gel: A simple agarose gel for analyzing RNA quality. Electrophoresis. 33 (2), 366-369 (2012).
  32. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  33. Bai, Y. Control of 3′ splice site choice in vivo by ASF/SF2 and hnRNP A1. Nucleic Acids Research. 27 (4), 1126-1134 (1999).
  34. Cote, G. J., Nguyen, N., Lips, C. J. M., Berget, S. M., Gagel, R. F. Validation of an in vitro RNA processing system for CT/CGRP precursor mRNA. Nucleic Acids Research. 19 (13), 3601-3606 (1991).
check_url/pt/62181?article_type=t

Play Video

Citar este artigo
Basei, F. L., Moura, L. A. R., Kobarg, J. Using the E1A Minigene Tool to Study mRNA Splicing Changes. J. Vis. Exp. (170), e62181, doi:10.3791/62181 (2021).

View Video